scholarly journals Notes Regarding the Dynamics of an Airplane subjected to Vertical Gusts

2020 ◽  
Vol 12 (1) ◽  
pp. 127-134
Author(s):  
Laurentiu MORARU ◽  
Marius STOIA-DJESKA

The behavior of the aircraft within turbulent atmosphere is a key aspect of design. Many books and articles deal with this topic. The current paper presents studies related to predicting the responses of aircraft flying through vertical gusts. The equations describing the dynamics of the longitudinal channel of the airplane are written to include the effect of the vertical wind. The paper includes comparisons of results provided by non-linear and linearized equations of motion.

Author(s):  
Andrew E. Dressel ◽  
Adeeb Rahman

In 2007, Meijaard, et al. [1] presented the canonical linearized equations of motion for the Whipple bicycle model along with test cases for checking alternative formulations of the equations of motion or alternative numerical solutions. This paper describes benchmarking three other implementations of bike equations of motion: the linearized equations for bicycles written by Papadopoulos and Schwab [2] in JBike6, the non-linear equations for bicycles outlined by Schwab [3] and implemented in MATLAB as a Cornell University class project, and the non-linear equations for motorcycles implemented in FastBike from the Motorcycle Dynamics Research Group at the University of Padua. [4] Some implementations are easier to benchmark than others. For example, JBike6 is designed to produce eigenvalues and easily exposes the coefficients of its linearized equations of motion. At the other extreme, the class project non-linear equations were not originally intended to generate eigenvalues and are implemented in a single 48×48 matrix. Finally, while FastBike does generate eigenvalues, its equations of motion incorporate tire and frame compliance, which cannot be completely disabled. Instead, the tire stiffness parameters must be increased, but not so much as to cause convergence errors in FastBike. In the end, all three implementations generate eigenvalues that match the published benchmark values to varying degrees. JBike6 comes the closest, with agreement of 12 digits or more. The class project is second, with agreement of 12 digits for most forward speeds, but with a loss of measurable agreement near the capsize speed due to a peak in the eigenvalue condition number. Unfortunately, FastBike is limited at this time to exporting eigenvalues with no more than two decimal places, and so agreement can only be found to ±0.005.


Author(s):  
Lionel Manin ◽  
Jarir Mahfoudh ◽  
Matthieu Richard ◽  
David Jauffres

Sports and mountaineering activities are becoming more and more popular. Equipment constructors seek to develop products and devices that are easy to use and that take into account all safety recommendations. PETZL and INSA have collaborated to develop a model for the simulation of displacements and efforts involved during the fall of a climber in the “safety chain”. The model is based on the classical equations of motion, in which climber and belayer are considered as rigid masses, while the rope is considered as a series of non-linear stiffness passing through several devices as brakes and runners. The main goal is to predict the forces in the rope and on the return anchor at the first rebound of the fall. Experiments were first performed in order to observe and determine the dynamic characteristics of the rope, and then to validate results stemming from simulations. Several fall configurations are simulated, and the model performs satisfactorily. It also provides a close approximation of the phenomena observed experimentally. The model enables the assessment of the existing equipments and the improved design of the future one.


2018 ◽  
Vol 123 (1259) ◽  
pp. 79-92
Author(s):  
A. Kumar ◽  
A. K. Ghosh

ABSTRACTIn this paper, a Gaussian process regression (GPR)-based novel method is proposed for non-linear aerodynamic modelling of the aircraft using flight data. This data-driven regression approach uses the kernel-based probabilistic model to predict the non-linearity. The efficacy of this method is examined and validated by estimating force and moment coefficients using research aircraft flight data. Estimated coefficients of aerodynamic force and moment using GPR method are compared with the estimated coefficients using maximum-likelihood estimation (MLE) method. Estimated coefficients from the GPR method are statistically analysed and found to be at par with estimated coefficients from MLE, which is popularly used as a conventional method. GPR approach does not require to solve the complex equations of motion. GPR further can be directed for the generalised applications in the area of aeroelasticity, load estimation, and optimisation.


2005 ◽  
Author(s):  
P. Ribeiro

The geometrically non-linear vibrations of plates under the combined effect of thermal fields and mechanical excitations are analyzed. With this purpose, an accurate model based on a p-version, hierarchical, first-order shear deformation finite element is employed. The constitutive material of the plates is linear elastic and isotropic. The equations of motion are solved in the time domain by an implicit time integration method. The temperature and the amplitude of the mechanical excitation are varied, and transitions from periodic to non-periodic motions are found.


Author(s):  
Carlos E. N. Mazzilli ◽  
Franz Rena´n Villarroel Rojas

The dynamic behaviour of a simple clamped beam suspended at the other end by an inclined cable stay is surveyed in this paper. The sag due to the cable weight, as well as the non-linear coupling between the cable and the beam motions are taken into account. The formulation for in-plane vibration follows closely that of Gattulli et al. [1] and confirms their findings for the overall features of the equations of motion and the system modal properties. A reduced non-linear mathematical model, with two degrees of freedom, is also developed, following again the steps of Gattulli and co-authors [2,3]. Hamilton’s Principle is evoked to allow for the projection of the displacement field of both the beam and the cable onto the space defined by the first two modes, namely a “global” mode (beam and cable) and a “local” mode (cable). The method of multiple scales is then applied to the analysis of the reduced equations of motion, when the system is subjected to the action of a harmonic loading. The steady-state solutions are characterised in the case of internal resonance between the local and the global modes, plus external resonance with respect to either one of the modes considered. A numerical application is presented, for which multiple-scale results are compared with those of numerical integration. A reasonable qualitative and quantitative agreement is seen to happen particularly in the case of external resonance with the higher mode. Discrepancies should obviously be expected due to strong non-linearities present in the reduced equations of motion. That is specially the case for external resonance with the lower mode.


2000 ◽  
Author(s):  
Paulo B. Gonçalves ◽  
Zenón J. G. N. Del Prado

Abstract This paper discusses the dynamic instability of circular cylindrical shells subjected to time-dependent axial edge loads of the form P(t) = P0+P1(t), where the dynamic component p1(t) is periodic in time and P0 is a uniform compressive load. In the present paper a low dimensional model, which retains the essential non-linear terms, is used to study the non-linear oscillations and instabilities of the shell. For this, Donnell’s shallow shell equations are used together with the Galerkin method to derive a set of coupled non-linear ordinary differential equations of motion which are, in turn, solved by the Runge-Kutta method. To study the non-linear behavior of the shell, several numerical strategies were used to obtain Poincaré maps, stable and unstable fixed points, bifurcation diagrams and basins of attraction. Particular attention is paid to two dynamic instability phenomena that may arise under these loading conditions: parametric instability and escape from the pre-buckling potential well. The numerical results obtained from this investigation clarify the conditions, which control whether or not instability may occur. This may help in establishing proper design criteria for these shells under dynamic loads, a topic practically unexplored in literature.


Author(s):  
Christoph G. Reuter ◽  
Peter Hagedorn

Abstract Traveling cables or threadlines appear in a number of technical applications such as textile machinery, V-belts, ski lifts, funiculars and also in simple models of traveling webs in paper machinery. The mechanical models used so far, most often neglect the effect of sag due to the weight of the cable, although it is well known that in some cases it may be quite important. In this paper, the authors develop a particularly simple model for translating cables using the assumption that the longitudinal inertia forces are negligible in comparison to the transversal inertia forces if the sag of the cable is sufficiently small. This assumption has already been made in a study of linear vibrations of stationary cables in 1970 by Irvine & Caughey. This lead to surprising results which have also been verified experimentally in the laboratory. The extended model presented in this paper includes gyroscopic and nonlinear terms in the equations of motion, related to the cable transport velocity and geometric nonlinearities. As a particular case (zero longitudinal speed and linear theory) the model of Irvine & Caughey is again contained in the present analysis. The linear and non-linear vibrations about a steady state solution are studied. The results show some interesting features which may also be relevant to technical systems if the transport speed is sufficiently high.


Author(s):  
H K Kim ◽  
Y-S Park

An efficient state-space method is presented to determine time domain forced responses of a structure using the Lagrange multiplier based sub-structure technique. Compared with the conventional mode synthesis methods, the suggested method can be particularly effective for the forced response analysis of a structure subjected to parameter changes with time, such as a missile launch system, and/or having localized non-linearities, because this method does not need to construct the governing equations of the combined whole structure. Both the loaded interface free-free modes and free interface modes can be employed as the modal bases of each sub-structure. The sub-structure equations of motion are derived using Lagrange multipliers and recurrence discrete-time state equations based upon the concept of the state transition matrix are formulated for transient response analysis. The suggested method is tested with two example structures, a simple lumped mass model with a non-linear joint and an abruptly parameter changing structure. The test results show that the suggested method is very accurate and efficient in calculating forced responses and in comparing it with the direct numerical integration method.


Author(s):  
Ram Turaga

The influence of deterministic surface texture on the sub-synchronous whirl stability of a rigid rotor has been studied. Non-linear transient stability analysis has been performed to study the stability of a rigid rotor supported on two symmetric journal bearings with a rectangular dimple of large aspect ratio. The surface texture parameters considered are dimple depth to minimum film thickness ratio and the location of the dimple on the bearing surface. Journal bearings of different Length to diameter ratios have been studied. The governing Reynolds equation for finite journal bearings with incompressible fluid has been solved using the Finite Element Method under isothermal conditions. The trajectories of the journal center have been obtained by solving the equations of motion of the journal center by the fourth-order Runge-Kutta method. When the dimple is located in the raising part of the pressure curve the positive rectangular dimple is seen to decrease the stability whereas the negative rectangular dimple is seen to improve the stability of the rigid rotor.


Sign in / Sign up

Export Citation Format

Share Document