scholarly journals Hyper-production of raw-starch-digesting enzyme by mutant fungal strain and optimisation of solid by-products

2012 ◽  
Vol 3 (2) ◽  
pp. 66-70
Author(s):  
Van Hanh Vu ◽  
Kim Keun

Selected fungal strain for production of raw-starch-digesting enzyme by solid state fermentation was improved by sequential exposures to gamma-irradiation of Co60, ultraviolet and treatments with N-methyl-N'-nitrosoguanidine. Mutant Aspergillus sp. CXN2-3A was chosen and its production of raw-starch-digesting enzyme (RSDE) was improved 2 folds higher than that of wild type. Optimal condition for the production of the enzyme using wheat bran as the substrate was accomplished for the CXN2-3A. With the optimal fermentation condition and the solid medium supplemented with urea and NH4NO3, CoSO4, Tween 80, 1% glucose, CXN2-3A produced RSDE 19.23 folds higher than wild type cultured in pre-optimized condition and un-supplemented medium. Chủng nấm chọn lọc sản xuất enzyme thủy phân tinh bột bằng cách lên men trạng thái rắn, chủng nấm được cải thiện bằng chiếu xạ tia cực tím, tia Co60 và các phương pháp xử lí với N-methyl-N'-nitrosoguanidine. Mutant Aspergillus sp. CXN2-3A, đã được lựa chọn để sản xuất enzyme (RSDE) thủy phân tinh bột sống cải thiện cao hơn 2 lần so với chủng dại. Điều kiện tối ưu cho việc sản xuất các enzyme bằng cách sử dụng cám, lúa mì đã được thực hiện cho CXN2-3A. Với điều kiện lên men xốp tối ưu và bổ sung urê và NH4NO3, CoSO4, Tween 80, 1% glucose, CXN2-3A đã sản xuất RSDE cao gấp 19,23 lần so với kiểu dại ở cùng điều kiện.

2020 ◽  
Vol 6 (4) ◽  
pp. 236 ◽  
Author(s):  
Ondrej Slaný ◽  
Tatiana Klempová ◽  
Volha Shapaval ◽  
Boris Zimmermann ◽  
Achim Kohler ◽  
...  

Solid-state fermentation (SSF) is a powerful fermentation technology for valorizing rest materials and by-products of different origin. Oleaginous Zygomycetes fungi are often used in SSF as an effective cell factory able to valorize a wide range of hydrophilic and hydrophobic substrates and produce lipid-enriched bioproducts. In this study, for the first time, the strain Mortierella alpina was used in SSF for the bioconversion of animal fat by-products into high value fermented bioproducts enriched with arachidonic acid (ARA). Two cereals-based matrixes mixed with four different concentrations of animal fat by-product were evaluated for finding optimal conditions of a fat-based SSF. All obtained fermented bioproducts were found to be enriched with ARA. The highest substrate utilization (25.8%) was reached for cornmeal and it was almost double than for the respective wheat bran samples. Similarly, total fatty acid content in a fermented bioproduct prepared on cornmeal is almost four times higher in contrast to wheat bran-based bioproduct. Although in general the addition of an animal fat by-product caused a gradual cessation of ARA yield in the obtained fermented bioproduct, the content of ARA in fungal biomass was higher. Thus, M. alpina CCF2861 effectively transformed exogenous fatty acids from animal fat substrate to ARA. Maximum yield of 32.1 mg of ARA/g of bioproduct was reached when using cornmeal mixed with 5% (w/w) of an animal fat by-product as substrate. Furthermore, implementation of attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy in characterization of obtained SSF bioproducts was successfully tested as an alternative tool for complex analysis, compared to traditional time-consuming methods.


2014 ◽  
Vol 66 (2) ◽  
pp. 483-490
Author(s):  
Marinela Sokarda-Slavic ◽  
Natasa Bozic ◽  
Z. Vujcic

Natural amylase producers, wild type strains of Bacillus sp., were isolated from different regions of Serbia. Strains with the highest amylase activity based on the starch-agar plate test were grown on solid-state fermentation (SSF) on triticale. The influence of the substrate and different cultivation temperature (28 and 37?C) on the production of amylase was examined. The tested strains produced ?-amylases when grown on triticale grains both at 28 and at 37?C, but the activity of amylases and the number and intensity of the produced isoforms were different. Significant hydrolysis of raw cornstarch was obtained with the Bacillus sp. strains 2B, 5B, 18 and 24B. The produced ?-amylases hydrolyzed raw cornstarch at a temperature below the temperature of gelatinization, but the ability for hydrolysis was not directly related to the total enzyme activity, suggesting that only certain isoforms are involved in the hydrolysis.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Romana Tabassum ◽  
Shazia Khaliq ◽  
Muhammad Ibrahim Rajoka ◽  
Foster Agblevor

The thermodynamic and kinetic properties of solids state raw starch digesting alpha amylase from newly isolated Bacillus licheniformis RT7PE1 strain were studied. The kinetic values Qp, Yp/s, Yp/X, and qp were proved to be best with 15% wheat bran. The molecular weight of purified enzyme was 112 kDa. The apparent Km and Vmax values for starch were 3.4 mg mL−1 and 19.5 IU mg−1 protein, respectively. The optimum temperature and pH for α-amylase were 55°C, 9.8. The half-life of enzyme at 95°C was 17h. The activation and denaturation activation energies were 45.2 and 41.2 kJ mol−1, respectively. Both enthalpies (ΔH∗) and entropies of activation (ΔS∗) for denaturation of α-amylase were lower than those reported for other thermostable α-amylases.


2011 ◽  
Vol 6 (2) ◽  
pp. 1934578X1100600 ◽  
Author(s):  
Ravindra H. Patil ◽  
Prakash Krishnan ◽  
Vijay L. Maheshwari

A wild fungal strain of Aspergillus terreus, labeled as PM3, was isolated by using the Candida albicans bioassay and confirmed by 18S r DNA analyses. Lovastatin was produced by submerged and solid state fermentations. Of the 30 isolated fungal strains, 11 showed lovastatin production with Aspergillus terreus PM3 being the best with a yield of 240 mg/L at the 10th day of submerged fermentation. Carboxymethylcellulose had a stimulatory effect on lovastatin production. It restricted uncontrolled filamentous growth, induced pellet formation and, thereby, improved lovastatin yield. In solid state fermentation (SSF), of the agro wastes from five crops (bran of wheat and rice, husks of red gram and soybean, and green gram straw), wheat bran showed maximum lovastatin production (12.5 mg/g of dry substrate) at pH 7.1 and a temperature of 30±2°C. Development of a lovastatin production process based on wheat bran as a substrate in SSF is economically attractive as it is a cheap and readily available raw material in agriculture-based countries.


1970 ◽  
Vol 40 (2) ◽  
pp. 139-147 ◽  
Author(s):  
Eman M Fawzi ◽  
Hossam S Hamdy

Cellulase producing fungus Chaetomium cellulolyticum NRRL 18756 was subjected to various doses of gamma irradiation to enhance the production of the industrially important enzyme carboxymethyl cellulase (CMCase). Among all the mutants tested, M-7 obtained through 0.5 KGy irradiation showed highest extracellular CMCase production which is 1.6-fold higher than that of the wild type. Optimal conditions for the production of CMCase by the mutant fungal strain using solid-state fermentation were examined. The optimized medium consisted of sugarcane bagasse supplemented with 1% (w/w) peptone, 2.5mM MgSO4, and 0.05% (v/w) Tween 80. Optimal moisture content and initial pH was 40% (v/w) and 5.0-6.5, respectively. The medium was fermented at 40° C for 4 days. The resulting CMCase yield was 4.0-fold more than that of the wild type strain grown on the basal wheat bran medium. Some characteristics of partially purified CMCase from the mutant and wild type of C. cellulolyticum were investigated. The partially purified mutant CMCase was more stable than the wild type CMCase. Thus, the higher thermostability of mutant CMCase makes it a potential candidate for commercial and industrial process. Key words: Chaetomium cellulolyticum; Carboxymethyl cellulase; Mutation; Optimization; Solid state fermentation DOI: http://dx.doi.org/10.3329/bjb.v40i2.9769   Bangladesh J. Bot. 40(2): 139-147, 2011 (December)


2021 ◽  
pp. 100926
Author(s):  
Luis O. Cano y Postigo ◽  
Daniel A. Jacobo-Velázquez ◽  
Daniel Guajardo-Flores ◽  
Luis Eduardo Garcia Amezquita ◽  
Tomás García-Cayuela

2020 ◽  
pp. 103159
Author(s):  
Sonja Jakovetić Tanasković ◽  
Nataša Šekuljica ◽  
Jelena Jovanović ◽  
Ivana Gazikalović ◽  
Sanja Grbavčić ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document