scholarly journals WETTING AND DRYING RESISTANCE OF LIME-STABILIZED EXPANSIVE SOILS MODIFIED WITH NANO-ALUMINA

2021 ◽  
Vol 12 (22) ◽  
pp. 70-80
Author(s):  
Jijo James ◽  
◽  
S V Sivapriya ◽  
Sajid Ali ◽  
T R Madhu ◽  
...  

Weak soil at construction sites necessitates ground improvement. Chemical stabilization is typically carried out using either lime or cement. The primary objective of this study was to assess the strength and durability of lime-stabilized soils modified with nano-alumina (NA). This study adopted the scientifically established initial consumption of lime (ICL) content for soil stabilization. In addition, nano-alumina was added in varying percentages as an auxiliary additive. It was observed that 0.5 % of nano-alumina was optimal with respect to the ICL for maximizing the soil stabilization. The stabilized soils were cured for 0, 7, 14, and 28 days. Post-curing testing revealed that the strength increased sixfold for the optimal combination, compared with the virgin soil. To understand the durability behavior of the optimal combination, the stabilized soil specimens were subjected to wetting and drying cycles after 28 days of curing. The optimal combination was nearly as durable as that of the lime-stabilized soil subjected to five cycles of wetting and drying.

2020 ◽  
Vol 63 (3) ◽  
pp. 13-20
Author(s):  
Jijo James ◽  
Priya Jothi ◽  
P. Karthika ◽  
S. Kokila ◽  
V. Vidyasagar

The investigation focussed on the possibility of replacing lime in soil stabilization using Egg Shell Ash (ESA), a waste derived from poultry industry. An expansive soil was characterized for its properties in the lab. The minimum lime content required for modification of soil properties was determined from the Eades and Grim pH test. This lime content came out to be 3%. The lime content was replaced using ESA in the proportions of 33%, 50%, 67% and 100%. Unconfined compression test specimens of dimension 38 mm x 76 mm were cast for different combinations and were cured for periods of 3, 7 and 28 days. Samples were also subjected to 1, 3 and 5 cycles of wetting and drying to understand its durability. After the designated curing periods and cycles of wetting and drying, they were strained axially till failure. Atterberg limits tests were done to determine the plasticity of the stabilized soil. The strength results indicated that ESA cannot be used under normal conditions as a replacement for lime, however, ESA replacement resulted in good durability of the specimens under conditions of wetting and drying. It was concluded that ESA replacement of lime can be adopted in conditions of wetting and drying.


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1119
Author(s):  
Mehdi Mirzababaei ◽  
Jafar Karimiazar ◽  
Ebrahim Sharifi Teshnizi ◽  
Reza Arjmandzadeh ◽  
Sayed Hessam Bahmani

Low bearing capacity soils may pose serious construction concerns such as reduced bearing capacity and excessive hydro-associated volume changes. Proper soil remediation techniques must be planned and implemented before commencing any construction on low bearing capacity soils. Environmentally friendly soil stabilizers are gradually replacing traditional soil stabilizers with high carbon dioxide emissions such as lime and cement. This study investigated the use of an alternative pozzolanic mix of nano-additives (i.e., nano-silica and nano-alumina) and cement to reduce the usage of cement for achieving competent soil stabilization outcomes. A series of unconfined compressive strength (UCS), direct shear, and durability tests were conducted on marl specimens cured for 1, 7, and 28 days stabilized with nano-additives (0.1~1.5%), 3% cement, and combined 3% cement and nano-additives. The UCS and shear strength of stabilized marl increased with nano-additives up to a threshold nano-additive content of 1% which was further intensified with curing time. Nano-additive treated cemented marl specimens showed long durability under the water, while the cemented marl decomposed early. The microfabric inspection of stabilized marl specimens showed significant growth of calcium silicate hydrate (CSH) products within the micro fabric of nano-silica treated marl with reduced pore-spaces within aggregated particles. The results confirmed that nano-additives can replace cement partially to achieve multi-fold improvement in the strength characteristics of the marl.


2019 ◽  
Vol 8 (4) ◽  
pp. 9198-9202 ◽  

In this study the investigational results obtained in the laboratory on expansive soils treated with low-cost materials i.e, lime and press mud are used. It is conducted to check the signs of progress in the properties of expansive soil with Press Mud and lime in varying percentages. The test results such as the Unconfined compression test, liquid limit, plastic limit, shrinkage limit, hydrometer analysis and pH obtained on expansive clays mixed with different proportions of lime and press mud are presented and discussed in this work. From the demonstrated result the addition of Press mud with lime in soil stabilization improves the Unconfined Compressive strength of the soil when compared to lime stabilization alone. The index properties of the soil have also been marginally improved due to the addition of Press mud as an admixture.


2021 ◽  
Vol 6 (1) ◽  
pp. 15
Author(s):  
Bhanu Prakash Darsi ◽  
Kumar Molugaram ◽  
Saisantosh Vamshi Harsha Madiraju

The rapid growth of population and fast urbanization has resulted in the reduction of the good quality of available land. Black cotton (BC) soil is one of such problematic soils, though they are very fertile soils, they are not suitable for the foundation of roads and buildings. They are expansive clays with a high potential for shrinking or swelling as a result of changing moisture content. Due to the intensive shrink-swell process, surface cracks appear during dry seasons. A small amount of rainfall, such as 6mm can make these soils impassable for all traffic. About 23% of the area in India is covered by BC soil. To utilize expansive soils effectively, proper ground improvement techniques are to be adopted. One of the most widely used techniques is to stabilize the expansive soil with conventional admixtures like lime, GGBS, cement, and fly ash. In the present study, an attempt is made to modify the engineering properties of black cotton soil. This research work presents the improvement of engineering characteristics of expansive soils using Lime and GGBS as an additive. For experimental work, Lime of 2%, 4%, and 6% used and corresponding 5%, and 10% of GGBS is used. Tests like the California Bearing Ratio (CBR) test, Unconfined Compression Strength (UCS) test, proctor test, Atterberg’s limits performed. After stabilization, it was found that UCS and CBR of soil increased significantly.


2018 ◽  
Vol 44 ◽  
pp. 00115
Author(s):  
Katarzyna Misiołek ◽  
Paweł Popielski ◽  
Katarzyna Affek

MICP (Microbially Induced Calcite Precipitation) is a new biological method in soil stabilization. This cheap and eco-friendly technique improves strength parameters of the ground such as shear strength and decreases the permeability of gravelly and sandy soil. There are variety of microorganisms that can be used in calcite precipitation. The most popular method is precipitation of calcium carbonate by bacteria. The main purpose of the article is to present the results from Gram staining of bacteria isolated from construction sites, which is the first step of their identification. Gram’s method allows to find out which morphological groups of bacteria are adapted to conditions present in soil from construction sites and therefore are potentially able to produce calcite. The article describes the methodology of isolation, staining and determination of morphological types of bacteria.


2020 ◽  
Vol 57 (9) ◽  
pp. 1356-1368 ◽  
Author(s):  
Hayder H. Abdullah ◽  
Mohamed A. Shahin ◽  
Megan L. Walske ◽  
Ali Karrech

Traditional soil stabilization by chemical additives such as cement and lime is a well-established technique for ground improvement of problematic soils. However, with the advantage of lower carbon emission and energy consumption, fly-ash-based geopolymer has recently become an attractive alternative to traditional stabilizers. Nevertheless, the literature lacks systemic approaches that assist engineers to apply this promising binder for soil stabilization, including the proper dosages required for an effective treatment. This paper introduces a systematic approach to assess the applicability of fly-ash-based geopolymer for stabilization of clay soils, through a comprehensive experimental program where engineered and natural clays were examined and evaluated, including soil compaction, plasticity, compressive strength, durability, pH level, and impact of pulverization. The results revealed several factors that influence the level of enhancement of geopolymer-treated clays, including the soil mineralogy, plasticity–activity properties, geopolymer concentration, curing time, and pulverization.


2018 ◽  
Vol 162 ◽  
pp. 01020 ◽  
Author(s):  
Nahla Salim ◽  
Kawther Al-Soudany ◽  
Nora Jajjawi

All structures built on soft soil may experience uncontrollable settlement and critical bearing capacity. This may not meet the design requirements for the geotechnical engineer. Soil stabilization is the change of these undesirable properties in order to meet the requirements. Traditional methods of stabilizing or through in-situ ground improvement such as compaction or replacement technique is usually costly. Now a safe and economic disposal of industrial wastes and development of economically feasible ground improvement techniques are the important challenges being faced by the engineering community. This work focuses on improving the soft soil brought from Baghdad by utilizing the local waste material for stabilization of soil, such as by using “Nylon carry bag’s by product” with the different percentage and corresponding to 1 %, 3% and 5% (the portion of stabilizer matters to soil net weight) of dried soil. The results indicated that as Nylon’s fiber content increases, the liquid limit decreases while the plastic limit increases, so the plasticity index decreases. Furthermore, the maximum dry density decreases while, the optimum moisture content increases as the Nylon’s fiber percentage increases. The compression index (decreases as the Nylon’s fiber increases and provides a maximum of 43% reduction by adding 5% nylon waste material. In addition, the results indicated that, the undrained shear strength increases as the nylon fiber increases.


Author(s):  
Alvin John Lim Meng Siang ◽  
Ehab Hamad Sfoog ◽  
Nahla Naji ◽  
Sim Sy Yi ◽  
Nickholas Anting Anak Guntor ◽  
...  

<span lang="EN-GB">Expansive soil is found in many parts of the world where its major drawback is its expansion and shrinking property upon moisture absorption and drying during alternation of rainy-dry seasons. Due to its swelling-shrinkage repeated process, fatigue and distress cause crack to structures. Granular pile anchor (GPA) system is a pioneering technique that is utilised in reinforcing these expansive soils. Granular pile anchor (GPA) system is a pioneering technique that is utilised in reinforcing expansive soils. The GPA provides tensile resistance which arrest the exerted upward forces and hence reducing heave. Previous investigations have only focused on load-displacement relationships by utilizing the pull-out technique. In this technique, an external force pulls the GPA and the corresponding displacements are recorded. The results provide indication of the GPA resistance to the applied force. However, in real conditions the heave and expansion forces were developed as a result of the pressure caused by the water absorption which pushes the entire soil bed in the upward direction along with the GPA. Therefore, this paper is aimed to explore this concept by carrying experimental and numerical investigations on a small scale model for a single pile with a diameter of 4 cm, with lengths of 20 and 40 cm. Ultimately, the reinforced soil exhibits reduction in upward force and heave compared to the unreinforced soil. Also, verifications for the testing shows that the relationship between the upward force and heave exhibits almost linear relationship for both experimental and numerical investigations. Therefore, shallow foundations incorporated with a GPA system proves to effectively lessen the heave that occurs in expansive soils which in turn can solve problems for constructions.</span>


Author(s):  
Richard Shumbusho ◽  
Gurmel S. Ghataora ◽  
Michael P.N. Burrow ◽  
Digne R. Rwabuhungu

This study was conducted to investigate the potential benefits of using geogrids in mitigating pavement defects notably roughness and longitudinal cracking on pavements built over expansive soils. The seasonal changes of expansive soils (periodic wetting and drying) cause detrimental effects on the overlying road pavements. Such detrimental behavior of expansive soils was simulated in a controlled laboratory environment through allowing cyclic wetting and drying of an expansive soil underlying a pavement section. The shrink/swell effects of the expansive soil subgrade were examined through monitoring its change in moisture, and measuring deformation of overlying pavement section. The experimental study suggested that a geogrid layer in a reinforced pavement section can reduce surface differential shrinking and swelling deformation resulting from underlying expansive soils by a factor of 2 and 3 respectively in comparison to unreinforced section. Given that an oedometer test which is typically used to predict swelling potential of expansive soils is known to overpredict in-situ soil swell, experimental program also investigated quantitatively the extent to which the oedometer can overestimate swelling behaviour of the real-field scenarios. It was found that oedometer percent swell can overpredict in-situ swelling behaviour of the expansive soil by a factor ranging between 2 and 10 depending upon the period over which the in-situ expansive soil has been in contact with water.


Sign in / Sign up

Export Citation Format

Share Document