The nonlinear coefficient for lossy waveguides: which expression to use?

Author(s):  
Alessandro Tuniz ◽  
Gordon H. Y. Li ◽  
C. Martijn de Sterke
2020 ◽  
Vol 45 (18) ◽  
pp. 5041
Author(s):  
Gordon Han Ying Li ◽  
Alessandro Tuniz ◽  
C. Martijn de Sterke

Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 440
Author(s):  
Chunguang Xu ◽  
Lei He ◽  
Shiyuan Zhou ◽  
Dingguo Xiao ◽  
Pengzhi Ma

During the service or external loading of the surface coating, the damage accumulation may develop in the coating or at the interface between the substrate and the coating, but it is difficult to measure directly in the early stage, so the acoustic nonlinear parameters are used as the early damage index of the coating. In this paper, the nonlinear wave motion equation is solved by the perturbation method and the new relationship between the relative ratio of second-order parameter and third-order parameter was derived. The nonlinear ultrasonic testing system is used to detect received signals during tensile testing of for the specimen with Al2O3 coatings. It is found that when the stress is less than 260 MPa, the appearance of the coating has no obvious change, but the nonlinear coefficients measured by the experiment increase with the increase of the tensile stress. By comparing the curves of nonlinear coefficients and stress respectively, the fluctuation of curves the second-order nonlinear coefficient A2 and the relative nonlinear coefficient β′ to stress is relatively small, and close to the linear relationship with the tensile stress, which indicates that the two parameters of the specimen with Al2O3 coatings are more sensitive to the bonding conditions, and can be used as an evaluation method to track the coating damage.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Shanyue Zhao ◽  
Yinqun Hua ◽  
Ruifang Chen ◽  
Jian Zhang ◽  
Ping Ji

The effects of laser irradiation on the structural and electrical properties of ZnO-based thin films were investigated. The XRD pattern shows that the thin films were highly textured along thec-axis and perpendicular to the surface of the substrate. Raman spectra reveal that Bi2O3segregates mainly at ZnO-ZnO grain boundaries. After laser irradiation processing, the grain size of the film was reduced significantly, and the intrinsic atomic defects of grain boundaries and Bi element segregated at the grain boundary were interacted frequently and formed the composite defects of acceptor state. The nonlinear coefficient increased to 24.31 and the breakdown voltage reduced to 5.34 V.


2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Yu-Hua Zhang ◽  
Xin-Xin Li ◽  
Xiang-Hong Wang ◽  
Zhen-Feng Huang ◽  
Han-Ling Mao ◽  
...  

Residual stress has significant influence on the performance of mechanical components, and the nondestructive estimation of residual stress is always a difficult problem. This study applies the relative nonlinear coefficient of critical refraction longitudinal (LCR) wave to nondestructively characterize the stress state of materials; the feasibility of residual stress estimation using the nonlinear property of LCR wave is verified. The nonlinear ultrasonic measurements based on LCR wave are conducted on components with known stress state to calculate the relative nonlinear coefficient. Experimental results indicate that the relative nonlinear coefficient monotonically increases with prestress and the increment of relative nonlinear coefficient is about 80%, while the wave velocity only decreases about 0.2%. The sensitivity of the relative nonlinear coefficient for stress is much higher than wave velocity. Furthermore, the dependence between the relative nonlinear coefficient and deformation state of components is found. The stress detection resolution based on the nonlinear property of LCR wave is 10 MPa, which has higher resolution than wave velocity. These results demonstrate that the nonlinear property of LCR wave is more suitable for stress characterization than wave velocity, and this quantitative information could be used for residual stress estimation.


2007 ◽  
Vol 336-338 ◽  
pp. 793-795 ◽  
Author(s):  
Hui Ming Ji ◽  
Xiao Chuan Liu ◽  
Ying Lv ◽  
Cui Xia Li ◽  
Xiao Dong Chen

The electrical properties and microstructures of SrTiO3 based voltage-sensing and dielectric dual-functional ceramics with nanometer donor and acceptor additives were studied. The La2O3 nanopowders and MnO-SiO2-Al2O3 (or CuO-SiO2-Al2O3) nano-composite powders were incorporated into SrTiO3 as donor, acceptor and liquid-phase sintering aids. Then semiconducting SrTiO3-based ceramics were sintered at 1360-1440oC for 2 h in a reducing atmosphere. The effects of the nanometer donor and acceptor additives and the sintering temperature on the electrical properties and microstructures of materials were discussed. The results showed that SrTiO3-based varistor ceramics with 1.1 mol% La2O3 and 0.1 mol% MnO nano-additives sintered at 1360-1420oC in graphite and N2 reducing atmosphere have excellent voltage-sensing and dielectric characteristics. The varistor voltage ranges from 2.3 to 5.3 V/mm, the nonlinear coefficient from 3.0 to 3.8, and the dielectric constant from 215,600 to 413,000.


2014 ◽  
Vol 1 (2) ◽  
pp. 87-97
Author(s):  
Sudakshina Prusty

This article discusses the nonlinear refractive index of silicon nanoparticles starting from the basic formalism to some of the consequent physical phenomena like self focusing and self phase modulation. Several experimental techniques mainly based on Z-scan are discussed to measure the nonlinear refractive index. Another less explored technique for silicon nanoparticles, which studies the far-field optical fringe pattern formed by spatial self-phase modulation, is also discussed. Computation of the nonlinear refractive index is shown in detail by employing these two techniques. While Z-scan can estimate the nonlinear coefficient of a medium in a chosen time scale, the optical fringe method can predict the overall nonlinear refractive index due to all possible physical mechanisms. Some of the recent results for silicon nanoparticles using these two techniques are also discussed.


Author(s):  
Jonathan Heinz ◽  
Miroslav Kolesik

A method is presented for transparent, energy-dependent boundary conditions for open, non-Hermitian systems, and is illustrated on an example of Stark resonances in a single-particle quantum system. The approach provides an alternative to external complex scaling, and is applicable when asymptotic solutions can be characterized at large distances from the origin. Its main benefit consists in a drastic reduction of the dimesnionality of the underlying eigenvalue problem. Besides application to quantum mechanics, the method can be used in other contexts such as in systems involving unstable optical cavities and lossy waveguides.


Sign in / Sign up

Export Citation Format

Share Document