High Performance Phase Retrieval Code for 3D Nanometer Scale Strain Mapping

2021 ◽  
Author(s):  
McKayla Townsend ◽  
Barbara Frosik ◽  
Hyrum Taylor ◽  
Landon Schnebly ◽  
Richard L. Sandberg ◽  
...  
2020 ◽  
Vol 53 (6) ◽  
pp. 1550-1558
Author(s):  
Giovanni L. Baraldi ◽  
Carlos S. B. Dias ◽  
Francisco M. C. Silva ◽  
Hélio C. N. Tolentino ◽  
Eduardo X. Miqueles

Described here are image reconstruction optimizations for ptychographic coherent X-ray scattering data and X-ray fluorescence, which have been developed for the new fourth-generation synchrotron light source, Sirius, at the Brazilian Synchrotron Light Laboratory. The optimization strategy has been applied to the standard experimental strategy for ptychographic and fluorescence experiments on the Carnaúba beamline which involves the use of high-speed continuous scans (fly scans) for a fast acquisition time over large areas through the use of a newly proposed trajectory named the alternating linear trajectory. The scientific computing developments presented here target an efficient use of graphical processing units (GPUs) to the point where large fly-scan acquisitions can be processed in real time on a local high-performance computer. Some optimizations involving a custom fast Fourier transform implementation and use of mixed precision can be applied to other algorithms and phase-retrieval techniques, and therefore this work provides a general optimization scheme. Finally, the optimization strategy presented here has improved performance by a factor of ∼2.5 times faster when compared with non-optimized GPU implementations.


2018 ◽  
Vol 232 (9-11) ◽  
pp. 1383-1398 ◽  
Author(s):  
Jian Zhu ◽  
Douglas Watts ◽  
Nicholas A. Kotov

Abstract Layer-by-layer (LBL) assembly produces nanocomposites with distinctively high volume fractions of nanomaterials and nanometer scale controlled uniformity. Although deposition of one nanometer scale layer at a time leads to high performance composites, this deposition mode is also associated with the slow multilayer build-up. Exponential LBL, spin coating, turbo-LBL and other methods tremendously accelerate the multilayer build-up but often yield lower, strength, toughness, conductivity, etc. Here, we introduce gelation assisted layer-by-layer (gaLBL) deposition taking advantage of a repeating cycle of hydrogel formation and subsequent polymer infiltration demonstrated using aramid nanofiber (ANF) and epoxy resin (EPX) as deposition partners. Utilization of ANF gels increases the thickness of each deposited layer from 1–10 nm to 30–300 nm while retaining fine control of thickness in each layer, high volume fraction, and uniformity. While increasing the speed of the deposition, the high density of interfaces associated with nanofiber gels helps retain high mechanical properties. The ANF/EPX multilayer composites revealed a rare combination of properties that was unavailable in traditional aramid-based and other composites, namely, high ultimate strength of 505±47 MPa, high toughness of 50.1±9.8 MJ/m3, and high transparency. Interestingly, the composite also displayed close-to-zero thermal expansion. The constellation of these materials properties is unique both for quasi-anisotropic composites and unidirectional materials with nanofiber alignment. gaLBL demonstrates the capability to resolve the fundamental challenge between high-performance and scalability. The gelation-assisted layered deposition can be extended to other functional components including nanoparticle gels.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 4006 ◽  
Author(s):  
Joshin Krishnan ◽  
José Bioucas-Dias ◽  
Vladimir Katkovnik

This paper proposes a novel algorithm for image phase retrieval, i.e., for recovering complex-valued images from the amplitudes of noisy linear combinations (often the Fourier transform) of the sought complex images. The algorithm is developed using the alternating projection framework and is aimed to obtain high performance for heavily noisy (Poissonian or Gaussian) observations. The estimation of the target images is reformulated as a sparse regression, often termed sparse coding, in the complex domain. This is accomplished by learning a complex domain dictionary from the data it represents via matrix factorization with sparsity constraints on the code (i.e., the regression coefficients). Our algorithm, termed dictionary learning phase retrieval (DLPR), jointly learns the referred to dictionary and reconstructs the unknown target image. The effectiveness of DLPR is illustrated through experiments conducted on complex images, simulated and real, where it shows noticeable advantages over the state-of-the-art competitors.


2013 ◽  
Vol 127 ◽  
pp. 119-125 ◽  
Author(s):  
Kyung Song ◽  
Ga-Young Shin ◽  
Jong Kyu Kim ◽  
Sang Ho Oh ◽  
Christoph T. Koch

2020 ◽  
Vol 4 (6) ◽  
pp. 2823-2830 ◽  
Author(s):  
Xiuniang Tan ◽  
Jianling Zhang ◽  
Jinbiao Shi ◽  
Xiuyan Cheng ◽  
Dongxing Tan ◽  
...  

We demonstrate for the first time that downsizing NH2-MIL-125 crystals to the nanometer scale can greatly improve their photocatalytic activity for the benzylamine oxidation reaction under mild conditions.


1998 ◽  
Vol 4 (S2) ◽  
pp. 218-219
Author(s):  
Robert L. Myklebust ◽  
Dale E. Newbury

Interest in electron beam x-ray microanalysis with low incident beam energies, defined arbitrarily as 5 keV and below, has been greatly stimulated in recent years by the development of the high performance field emission gun scanning electron microscope (FEG-SEM), which can produce a nanometer-scale probe with sufficient current to operate with both energy dispersive (EDS) and wavelength dispersive (WDS) spectrometers. Microanalysis in this regime requires the analyst to confront new spectrometry problems that are not typically encountered, or that can be safely ignored, when operating with conventional beam energies, 10 keV or greater. With low energy operation, the choice of atomic shells that can be accessed is restricted, forcing the analyst to make use of shells that have low fluorescence yields for intermediate and high atomic number elements, and possibly strong chemical effects, which are evident with high resolution x-ray spectrometry.


2009 ◽  
Vol 81 (1) ◽  
pp. 45-60 ◽  
Author(s):  
Akinori Saeki ◽  
Seiichi Tagawa

The dynamics of short-lived charges generated by pulsed radiations such as electron beam (EB) and photon was investigated to elucidate their reactivity, electronic properties, and spatial behavior on a nanometer scale. Chemical reactions of radical cations (hole) and anions (electron) in condensed matter (organic liquids, polymers, and conjugated materials) occupy an important place in postoptical nanolithography and organic electric devices. The spatiotemporal evolution of charges during geminate ion recombination was measured by a highly improved picosecond (ps) pulse radiolysis and incorporated into a Monte Carlo simulation to clarify the key role of the charges in the formation of latent image roughness of chemically amplified resists (CARs). The dynamics and alternating-current (AC) mobility of transient charge carriers in conjugated materials such as polymer and organic crystals were studied by the combination of microwave conductivity and optical spectroscopies, revealing the potential plausibility for high-performance electric devices. Anisotropy measurement and methodology to resolve the sum of mobility into hole and electron components without electrodes have also been demonstrated.


2021 ◽  
Vol 11 (11) ◽  
pp. 5265
Author(s):  
Xiaoyan Shen ◽  
Jing Yu ◽  
Jianlong Yin ◽  
Dongsheng Li

Slide stability is key to the aerostatic guide in ultra-precise machines; thus, it has garnered plenty of attention. Macro-scale studies are commonplace, but micro- and nano-vibration issues require more attention. Microscope vibration is mainly caused by tiny changes in the fluid parameters of lubricating gas film, which is complex and has no verdict. In this case, slide-gas interaction should be considered. In this study, the widely used orifice-type restrictor was investigated for its nano-vibration performance. A Comsol finite-element-method fluid–structure interaction model was used to simulate and analyze an orifice-type restrictor, and orifice-restrictor vibration characteristics at the nanometer scale were inspected using a high-performance laser vibrometer. The results demonstrate that see-saw mode vibrations occur in the restrictors, growing stronger with increased air-supply pressure. The see-saw vibration’s axis is speculatively determined based on orifice and restrictor structures, and the vibration type is related to the number of orifices. The results also show that the vibration is random with natural frequencies at the kilohertz level. The newly provided research results are beneficial for better understanding the nano-vibrations of orifice-type restrictors.


Sign in / Sign up

Export Citation Format

Share Document