Optoelectronic Oscillator (OEO) designs: Wide-range tunable Silicon Microring resonator design and Low-noise High frequency Optical Mix Oscillator design

Author(s):  
Mariya Wani ◽  
Syed Azeemuddin
Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6214
Author(s):  
Vincenzo Romano Marrazzo ◽  
Francesco Fienga ◽  
Michele Riccio ◽  
Andrea Irace ◽  
Giovanni Breglio

In this manuscript, an optically passive fiber Bragg grating (FBG) interrogation system able to perform high-frequency measurement is proposed. The idea is mainly based on the use of an arrayed waveguide grating (AWG) device which is used to discriminate the fiber optic sensor (FOS) wavelength encoded response under test in function of its output channels. As made clear by the theoretical model studied in the proposed manuscript, the Bragg wavelength shift can be detected as in linear dependence with the proposed interrogation function which changes with the voltage produced by two (or more) adjacent AWG output channels. To prove the feasibility of the system, some experimental analyses are conducted with a custom electrical module characterized by high-speed and low-noise operational amplifiers. As static measurements, three FBGs with different full width at half maximum (FWHM) have been monitored under wide-range wavelength variation; while, as dynamic measurement, one FBG, glued onto a metal plate, in order to sense the vibration at low and high frequency, was detected. The output signals have been processed by a digital acquisition (DAQ) board and a graphical user interface (GUI). The presented work highlights the characteristics of the proposed idea as competitor among the entire class of interrogation systems currently used. This is because here, the main device, that is the AWG, is passive and reliable, without the need to use modulation signals, or moving parts, that affect the speed of the system. In addition, the innovative multi-channel detection algorithm allows the use of any type of FOS without the need to have a perfectly match of spectra. Moreover, it is also characterized by a high dynamic range without loss of sensitivity.


2017 ◽  
Vol 2017 (45) ◽  
pp. 83-89
Author(s):  
A.A. Marusenkov ◽  

Using dedicated high-frequency measuring system the distribution of the Barkhausen jumps intensity along a reversal magnetization cycle was investigated for low noise fluxgate sensors of various core shapes. It is shown that Barkhausen (reversal magnetization) noise intensity is strongly inhomogeneous during an excitation cycle. In the traditional second harmonic fluxgate magnetometers the signals are extracted in the frequency domain, as a result, some average value of reversal magnetization noises is contributed to the output signals. In order to fit better the noise shape and minimize its transfer to the magnetometer output the new approach for demodulating signals of these sensors is proposed. The new demodulating method is based on information extraction in the time domain taking into account the statistical properties of cyclic reversal magnetization noises. This approach yields considerable reduction of the fluxgate magnetometer noise in comparison with demodulation of the signal filtered at the second harmonic of the excitation frequency.


Author(s):  
Hui Wang ◽  
Hanbo Zhao ◽  
Yujia Chu ◽  
Jiang Feng ◽  
Keping Sun

Abstract High-frequency hearing is particularly important for echolocating bats and toothed whales. Previously, studies of the hearing-related genes Prestin, KCNQ4, and TMC1 documented that adaptive evolution of high-frequency hearing has taken place in echolocating bats and toothed whales. In this study, we present two additional candidate hearing-related genes, Shh and SK2, that may also have contributed to the evolution of echolocation in mammals. Shh is a member of the vertebrate Hedgehog gene family and is required in the specification of the mammalian cochlea. SK2 is expressed in both inner and outer hair cells, and it plays an important role in the auditory system. The coding region sequences of Shh and SK2 were obtained from a wide range of mammals with and without echolocating ability. The topologies of phylogenetic trees constructed using Shh and SK2 were different; however, multiple molecular evolutionary analyses showed that those two genes experienced different selective pressures in echolocating bats and toothed whales compared to non-echolocating mammals. In addition, several nominally significant positively selected sites were detected in the non-functional domain of the SK2 gene, indicating that different selective pressures were acting on different parts of the SK2 gene. This study has expanded our knowledge of the adaptive evolution of high-frequency hearing in echolocating mammals.


2019 ◽  
Vol 31 (1) ◽  
pp. 16-22 ◽  
Author(s):  
Alison C. Cleary ◽  
Maria C. Casas ◽  
Edward G. Durbin ◽  
Jaime Gómez-Gutiérrez

AbstractThe keystone role of Antarctic krill,Euphausia superbaDana, in Southern Ocean ecosystems, means it is essential to understand the factors controlling their abundance and secondary production. One such factor that remains poorly known is the role of parasites. A recent study of krill diet using DNA analysis of gut contents provided a snapshot of the parasites present within 170E. superbaguts in a small area along the West Antarctic Peninsula. These parasites includedMetschnikowiaspp. fungi,Haptoglossasp. peronosporomycetes,LankesteriaandParalecudinaspp. apicomplexa,Stegophorussp. nematodes, andPseudocolliniaspp. ciliates. Of these parasites,Metschnikowiaspp. fungi andPseudocolliniaspp. ciliates had previously been observed inE. superba, as had other genera of apicomplexans, though notLankesteriaandParalecudina.In contrast, nematodes had previously only been observed in eggs ofE. superba, and there are no literature reports of peronosporomycetes in euphausiids.Pseudocolliniaspp., parasitoids which obligately kill their host, were the most frequently observed infection, with a prevalence of 12%. The wide range of observed parasites and the relatively high frequency of infections suggest parasites may play a more important role than previously acknowledged inE. superbaecology and population dynamics.


2004 ◽  
Vol 04 (02) ◽  
pp. L345-L354 ◽  
Author(s):  
Y. HADDAB ◽  
V. MOSSER ◽  
M. LYSOWEC ◽  
J. SUSKI ◽  
L. DEMEUS ◽  
...  

Hall sensors are used in a very wide range of applications. A very demanding one is electrical current measurement for metering purposes. In addition to high precision and stability, a sufficiently low noise level is required. Cost reduction through sensor integration with low-voltage/low-power electronics is also desirable. The purpose of this work is to investigate the possible use of SOI (Silicon On Insulator) technology for this integration. We have fabricated SOI Hall devices exploring the useful range of silicon layer thickness and doping level. We show that noise is influenced by the presence of LOCOS and p-n depletion zones near the edges of the active zones of the devices. A proper choice of SOI technological parameters and process flow leads to up to 18 dB reduction in Hall sensor noise level. This result can be extended to many categories of devices fabricated using SOI technology.


Urolithiasis ◽  
2017 ◽  
Vol 46 (4) ◽  
pp. 333-341 ◽  
Author(s):  
Léa Huguet ◽  
Marine Le Dudal ◽  
Marine Livrozet ◽  
Dominique Bazin ◽  
Vincent Frochot ◽  
...  

Author(s):  
Walter Anderson ◽  
Constantine Ciocanel ◽  
Mohammad Elahinia

Engine vibration has caused a great deal of research for isolation to be performed. Traditionally, isolation was achieved through the use of pure elastomeric (rubber) mounts. However, with advances in vehicle technology, these types of mounts have become inadequate. The inadequacy stems from the vibration profile associated with the engine, i.e. high displacement at low frequency and small displacement at high frequency. Ideal isolation would be achieved through a stiff mount for low frequency and a soft mount for high frequency. This is contradictory to the performance of the elastomeric mounts. Hydraulic mounts were then developed to address this problem. A hydraulic mount has variable stiffness and damping due to the use of a decoupler and an inertia track. However, further advances in vehicle technology have rendered these mounts inadequate as well. Examples of these advances are hybridization (electric and hydraulic) and cylinder on demand (VCM, MDS & ACC). With these technologies, the vibration excitation has a significantly different profile, occurs over a wide range of frequencies, and calls for a new technology that can address this need. Magnetorheological (MR) fluid is a smart material that is able to change viscosity in the presence of a magnetic field. With the use of MR fluid, variable damping and stiffness can be achieved. An MR mount has been developed and tested. The performance of the mount depends on the geometry of the rubber part as well as the behavior of the MR fluid. The rubber top of the mount is the topic of this study due to its major impact on the isolation characteristics of the MR mount. To develop a design methodology to address the isolation needs of different hybrid vehicles, a geometric parametric finite element analysis has been completed and presented in this paper.


1999 ◽  
Vol 09 (12) ◽  
pp. 2295-2303 ◽  
Author(s):  
S. RIPOLL MASSANÉS ◽  
C. J. PÉREZ VICENTE

We have studied the stochastic behavior of Fitzhugh–Nagumo neuron-like model (FN) induced by subthreshold external stimuli. Our analysis based on three standard measures: the power spectrum, interspike interval distribution (ISI) and autocorrelation function shows that it is possible to define a characteristic time scale which can be identified in the response of the system for a wide range of frequencies. In contrast to previous studies we have focused our attention on high frequency signals which could be of interest for real systems such as nervous fibers in the auditory system. We report behaviors which resemble those of classical deterministic oscillators but never the stochastic resonance phenomenon typical of low frequency signals.


1996 ◽  
Author(s):  
Wilhelm von Heesen ◽  
Norbert Lindener ◽  
Wolfgang Neise

2013 ◽  
Vol 75 (1) ◽  
pp. 133-145 ◽  
Author(s):  
Prashanth Muppala ◽  
Saiyu Ren ◽  
George Yu-Heng Lee

Sign in / Sign up

Export Citation Format

Share Document