On-chip high sensitivity rotation sensing based on higher-order exceptional points

2019 ◽  
Vol 36 (9) ◽  
pp. 2618
Author(s):  
Shuo Jiang ◽  
Xiaoyang Chang ◽  
Wenxiu Li ◽  
Peng Han ◽  
Yang Zhou ◽  
...  
Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ali Rostamian ◽  
Ehsan Madadi-Kandjani ◽  
Hamed Dalir ◽  
Volker J. Sorger ◽  
Ray T. Chen

Abstract Thanks to the unique molecular fingerprints in the mid-infrared spectral region, absorption spectroscopy in this regime has attracted widespread attention in recent years. Contrary to commercially available infrared spectrometers, which are limited by being bulky and cost-intensive, laboratory-on-chip infrared spectrometers can offer sensor advancements including raw sensing performance in addition to use such as enhanced portability. Several platforms have been proposed in the past for on-chip ethanol detection. However, selective sensing with high sensitivity at room temperature has remained a challenge. Here, we experimentally demonstrate an on-chip ethyl alcohol sensor based on a holey photonic crystal waveguide on silicon on insulator-based photonics sensing platform offering an enhanced photoabsorption thus improving sensitivity. This is achieved by designing and engineering an optical slow-light mode with a high group-index of n g  = 73 and a strong localization of modal power in analyte, enabled by the photonic crystal waveguide structure. This approach includes a codesign paradigm that uniquely features an increased effective path length traversed by the guided wave through the to-be-sensed gas analyte. This PIC-based lab-on-chip sensor is exemplary, spectrally designed to operate at the center wavelength of 3.4 μm to match the peak absorbance for ethanol. However, the slow-light enhancement concept is universal offering to cover a wide design-window and spectral ranges towards sensing a plurality of gas species. Using the holey photonic crystal waveguide, we demonstrate the capability of achieving parts per billion levels of gas detection precision. High sensitivity combined with tailorable spectral range along with a compact form-factor enables a new class of portable photonic sensor platforms when combined with integrated with quantum cascade laser and detectors.


1974 ◽  
Vol 52 (9) ◽  
pp. 821-829 ◽  
Author(s):  
I. R. Dagg ◽  
G. E. Reesor ◽  
J. L. Urbaniak

Collision induced microwave absorption is reported in pure N2, N2–Ar, N2–CH4, mixtures, and in pure CH4 in the 35 and 70 GHz regions (1.1 and 2.3 cm−1) at a temperature of 22 °C. The measurements are accomplished using overmoded high Q cavities capable of pressurization of up to 5000 p.s.i.g. The apparatus and method are described. With the high sensitivity attained, the results in pure N2 from 30 → 250 amagat reveal terms in the square and cube of the density from which the relaxation times are calculated. The linear dependence on frequency of the collision induced absorption up to 2.3 cm−1 is established. Higher order dependence on the density is observed in the N2–Ar and N2–CH4 mixtures. Various estimates of the quadrupole moment of N2 are given, making use of earlier results in other frequency regions.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1304
Author(s):  
Raquel Fernández de Cabo ◽  
David González-Andrade ◽  
Pavel Cheben ◽  
Aitor V. Velasco

Efficient power splitting is a fundamental functionality in silicon photonic integrated circuits, but state-of-the-art power-division architectures are hampered by limited operational bandwidth, high sensitivity to fabrication errors or large footprints. In particular, traditional Y-junction power splitters suffer from fundamental mode losses due to limited fabrication resolution near the junction tip. In order to circumvent this limitation, we propose a new type of high-performance Y-junction power splitter that incorporates subwavelength metamaterials. Full three-dimensional simulations show a fundamental mode excess loss below 0.1 dB in an ultra-broad bandwidth of 300 nm (1400–1700 nm) when optimized for a fabrication resolution of 50 nm, and under 0.3 dB in a 350 nm extended bandwidth (1350–1700 nm) for a 100 nm resolution. Moreover, analysis of fabrication tolerances shows robust operation for the fundamental mode to etching errors up to ± 20 nm. A proof-of-concept device provides an initial validation of its operation principle, showing experimental excess losses lower than 0.2 dB in a 195 nm bandwidth for the best-case resolution scenario (i.e., 50 nm).


2017 ◽  
Vol 111 (6) ◽  
pp. 061109 ◽  
Author(s):  
Lei Wan ◽  
Hengky Chandrahalim ◽  
Cong Chen ◽  
Qiushu Chen ◽  
Ting Mei ◽  
...  

2013 ◽  
Vol 21 (7) ◽  
pp. 8605 ◽  
Author(s):  
Feng Gao ◽  
Ravi Pant ◽  
Enbang Li ◽  
Christopher G. Poulton ◽  
Duk-Yong Choi ◽  
...  

Author(s):  
E. Gazzola ◽  
A. Pozzato ◽  
G. Ruffato ◽  
E. Sovernigo ◽  
A. Sonato

AbstractSurface plasmon resonance biosensors have recently known a rapid diffusion in the biological field and a large variety of sensor configurations is currently available. Biological applications are increasingly demanding sensor miniaturization, multiple detection in parallel, temperature-controlled environment and high sensitivity. Indeed, versatile and tunable sensing platforms, together with an accurate biological environment monitoring, could improve the realization of custom biosensing devices applicable to different biological reactions. Here we propose a smart and high throughput fabrication protocol for the realization of a custommicrofluidic plasmonic biochip that could be easily tuned and modified to address different biological applications. The sensor chip here presented shows a high sensing capability, monitored by an accurate signal calibration in the presence of concentration and temperature variation.


Author(s):  
David R. Selviah ◽  
Janti Shawash

This chapter celebrates 50 years of first and higher order neural network (HONN) implementations in terms of the physical layout and structure of electronic hardware, which offers high speed, low latency, compact, low cost, low power, mass produced systems. Low latency is essential for practical applications in real time control for which software implementations running on CPUs are too slow. The literature review chapter traces the chronological development of electronic neural networks (ENN) discussing selected papers in detail from analog electronic hardware, through probabilistic RAM, generalizing RAM, custom silicon Very Large Scale Integrated (VLSI) circuit, Neuromorphic chips, pulse stream interconnected neurons to Application Specific Integrated circuits (ASICs) and Zero Instruction Set Chips (ZISCs). Reconfigurable Field Programmable Gate Arrays (FPGAs) are given particular attention as the most recent generation incorporate Digital Signal Processing (DSP) units to provide full System on Chip (SoC) capability offering the possibility of real-time, on-line and on-chip learning.


2014 ◽  
Vol 3 (2) ◽  
pp. 106
Author(s):  
Rajini Gaddam Kesava Reddy ◽  
Sharmila Ashok kumar ◽  
Sankardoss Varadhan

Photonic crystals are materials patterned with a periodicity in dielectric constant in one, two and three dimensions and associated with Bragg scattering which can create range of forbidden frequencies called Photonic Band Gap (PBG). By optimizing various parameters and creating defects, we will review the design and characterization of waveguides, optical cavities and multi-fluidic channel devices. We have used such waveguides and laser nanocavities as Biosensor, in which field intensity is strongly dependent on the type of biofliud and its refractive index. This design and simulation technique leads to development of a nanophotonic sensor for detection of biofluids. In this paper, we have simulated sensing of biofliud in various photonic defect structures with the help of a numerical algorithm called Finite Difference Time Domain (FDTD) method. The simulation result shows the high sensitivity for the change in the bio-molecular structure. For developing the complete sensor system, we have to use the MEMS technologies to integrate on-chip fluidic transport components with sensing systems. The resulting biofluidic system will have the capability to continuously monitor the concentration of a large number of relevant biological molecules continuously from ambulatory patients. Keywords: FDTD, Photonic Crystals, Bio fluid Sensor, Optical Cavity.


2016 ◽  
Vol 374 ◽  
pp. 1-7 ◽  
Author(s):  
Daquan Yang ◽  
Chunhong Wang ◽  
Wei Yuan ◽  
Bo Wang ◽  
Yujie Yang ◽  
...  

2011 ◽  
Vol 254 ◽  
pp. 13-16
Author(s):  
Badariah Bais ◽  
Liang Wen Loh ◽  
Rosminazuin A. Rahim ◽  
Majlis Burhanuddin Yeop

Micro-cantilever has been proven as an outstanding platform for extremely sensitive chemical and biological sensors. MEMS cantilever-based sensor is becoming popular due to its high sensitivity, high selectivity, easy to fabricate and can be easily integrated with on-chip electronics circuitry. However, the interface circuit used in this kind of sensors typically has a very low resolution and this limits its capability in sensing the small signal generated by the micro-cantilever. One solution is by incorporating stress concentration regions (SCR) on the micro-cantilever which were found to improve the sensitivity of the sensor. This project will focus on optimizing the sensitivity of the micro-cantilever by modeling the micro-cantilever with the SCR technique. The model is then be verified by numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document