scholarly journals Compact high-performance adiabatic 3-dB coupler enabled by subwavelength grating slot in the silicon-on-insulator platform

2018 ◽  
Vol 26 (23) ◽  
pp. 29873 ◽  
Author(s):  
Luhua Xu ◽  
Yun Wang ◽  
Amar Kumar ◽  
Eslam El-Fiky ◽  
Deng Mao ◽  
...  
1993 ◽  
Vol 316 ◽  
Author(s):  
H. H. Hosack

Silicon-On-Insulator (SOI) technology [1-4] has been shown to have significant performance and fabrication advantages over conventional bulk processing for a wide variety of large scale CMOS IC applications. Advantages in radiation environments has generated significant interest in this technology from military and space science communities [5,6]. Possible advantages of SOI technology for low power, low voltage and high performance circuit applications is under serious consideration by several commercial IC manufacturers [7,8].


2021 ◽  
Vol 255 ◽  
pp. 01003
Author(s):  
Kevan K. MacKayt ◽  
Winnie N. Ye

A novel broadband multimode waveguide bend is proposed that supports the propagation of multiple TE modes on a silicon-on-insulator platform. The gradient curvature bend utilizes trapezoidal subwavelength grating (SWG) segments, connected by adiabatically tapered radial strips to achieve efficient mode (de)multiplexing. The inclusion of the radial strips offers an extra degree of design freedom, allowing the realization of a multimode bend with only one single full etch step. The access waveguide has a width of 2.075 μm with an effective radius of 10 μm. Propagation loss for all modes remains below 2.96 dB, and intermodal crosstalk has a maximum of -19 dB across a broad bandwidth of 100 nm, centred at 1550 nm. This work presents an excellent design choice for broadband mode-division multiplexing operations.


1997 ◽  
Vol 469 ◽  
Author(s):  
Guénolé C.M. Silvestre

ABSTRACTSilicon-On-Insulator (SOI) materials have emerged as a very promising technology for the fabrication of high performance integrated circuits since they offer significant improvement to device performance. Thin silicon layers of good crystalline quality are now widely available on buried oxide layers of various thicknesses with good insulating properties. However, the SOI structure is quite different from that of bulk silicon. This paper will discuss a study of point-defect diffusion and recombination in thin silicon layers during high temperature annealing treatment through the investigation of stacking-fault growth kinetics. The use of capping layers such as nitride, thin thermal oxide and thick deposited oxide outlines the diffusion mechanisms of interstitials in the SOI structure. It also shows that the buried oxide layer is a very good barrier to the diffusion of point defects and that excess silicon interstitials may be reincorporated at the top interface with the thermal oxide through the formation of SiO species. Finally, from the experimental values of the activation energies for the growth and the shrinkage of stacking-faults, the energy of interstitial creation is evaluated to be 2.6 eV, the energy for interstitial migration to be 1.8 eV and the energy of interstitial generation during oxidation to be 0.2 eV.


Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1071
Author(s):  
Bo Jiang ◽  
Yan Su ◽  
Guowen Liu ◽  
Lemin Zhang ◽  
Fumin Liu

Disc gyroscope manufactured through microelectromechanical systems (MEMS) fabrication processes becomes one of the most critical solutions for achieving high performance. Some reported novel disc constructions acquire good performance in bias instability, scale factor nonlinearity, etc. However, antivibration characteristics are also important for the devices, especially in engineering applications. For multi-ring structures with central anchors, the out-of-plane motions are in the first few modes, easily excited within the vibration environment. The paper presents a multi-ring gyro with good dynamic characteristics, operating at the first resonant mode. The design helps obtain better static performance and antivibration characteristics with anchor points outside of the multi-ring resonator. According to harmonic experiments, the nearest interference mode is located at 30,311 Hz, whose frequency difference is 72.8% far away from working modes. The structures were fabricated with silicon on insulator (SOI) processes and wafer-level vacuum packaging, where the asymmetry is 780 ppm as the frequency splits. The gyro also obtains a high Q-factor. The measured value at 0.15 Pa was 162 k, which makes the structure have sizeable mechanical sensitivity and low noise.


2018 ◽  
Vol 9 (1) ◽  
pp. 89 ◽  
Author(s):  
Siegfried Bondarenko ◽  
Claus Villringer ◽  
Patrick Steglich

Nonlinear optical dyes doped in optical polymer matrices are widely used for electro-optical devices. Linear optical properties change with dye concentration, which leads to a change in modal properties, especially in nano-structured integrated waveguides such as silicon slot-waveguides. Here, we investigate the influence of a nonlinear optical dye on the performance of a silicon-organic hybrid slot-waveguide. A simulation study of the modal and optical confinement properties is carried out and dependence of the structural parameters of the slot-waveguide and the organic cladding material is taken into account. As cladding material, a guest-host polymer system is employed comprising the nonlinear optical dye Disperse Red 1 (DR1) doped in a poly[methyl methacrylate] (PMMA) matrix. The refractive indices of doped and undoped PMMA were deduced from ellipsometric data. We present a guideline for an optimized slot-waveguide design for the fabrication in silicon-on-insulator technology giving rise to scalable, high-performance integrated electro-optical modulators.


2014 ◽  
Vol 39 (15) ◽  
pp. 4442 ◽  
Author(s):  
J. Gonzalo Wangüemert-Pérez ◽  
Pavel Cheben ◽  
Alejandro Ortega-Moñux ◽  
Carlos Alonso-Ramos ◽  
Diego Pérez-Galacho ◽  
...  

2005 ◽  
Vol 8 (1-3) ◽  
pp. 367-370 ◽  
Author(s):  
Pei Wei Chien ◽  
San Lein Wu ◽  
Shoou Jinn Chang ◽  
Shinji Koh ◽  
Yasuhiro Shiraki

Sign in / Sign up

Export Citation Format

Share Document