Some Pattern Recognition Considerations for Low-Temperature Luminescence and Room Temperature Fluorescence Spectra

1982 ◽  
Vol 36 (2) ◽  
pp. 110-116 ◽  
Author(s):  
Gene Sogliero ◽  
Delyle Eastwood ◽  
Robert Ehmer

Low-temperature (77 K) luminescence (LTL) and room temperature fluorescence (RTF) spectra of polynuclear aromatic hydrocarbons with varying amounts of spectral structure are studied as a function of several instrument parameters (emission slit width, scan speed, and damping) in order to develop quantitative criteria for spectral quality and reproducibility. The purpose of this study is to assess the classification and pattern recognition capabilities for hazardous chemicals for various spectral techniques and to develop suitable spectral libraries and search routines. In order to quantitate the effect of the instrument parameters on the spectrum, a statistic (power) was used to measure spectral quality. In addition, three measures of similarity, used for assessing the agreement between two patterns (spectra), were evaluated to determine the variability that can be expected in spectra obtained under the same and different instrumental conditions. Analysis of the data confirms that the low-temperature luminescence technique produces better quality spectra than the room temperature fluorescence technique, but that room temperature fluorescence spectra are more repeatable.

2020 ◽  
Vol 65 (4) ◽  
pp. 317
Author(s):  
V. Yu. Kudrya ◽  
V. M. Yashchuk ◽  
A. P. Naumenko ◽  
Y. Mely ◽  
Ya. O. Gumenyuk

The optical absorption at 300 K and the fluorescence and phosphorescence at 78 K of the emissive guanine substitute, deoxythienoguanosine, (dthG) were investigated in aqueous and TRIS-HCl-buffer solutions. Two optical absorption and fluorescence centers at room temperature were attributed to two keto-enol tautomers of dthG, which confirms previously obtained results. In contrast to room temperature, only one emission band was observed at 78 K in fluorescence spectra that was close to the long-wave fluorescence band at room temperature and could be associated with the tautomer with long-wave absorption. This phenomenon can be explained by the energy transfer by excitations in a frozen solution between two types of the optical centers mentioned above. The similar conclusion is drawn for the phosphorescence: only one tautomer phosphorescence band is observed. The spectral positions of this band maximum are essentially different for aqueous and buffer solutions (∼50 nm).


2004 ◽  
Vol 52 (4) ◽  
pp. 479-487 ◽  
Author(s):  
Cs. Pribenszky ◽  
M. Molnár ◽  
S. Cseh ◽  
L. Solti

Cryoinjuries are almost inevitable during the freezing of embryos. The present study examines the possibility of using high hydrostatic pressure to reduce substantially the freezing point of the embryo-holding solution, in order to preserve embryos at subzero temperatures, thus avoiding all the disadvantages of freezing. The pressure of 210 MPa lowers the phase transition temperature of water to -21°C. According to the results of this study, embryos can survive in high hydrostatic pressure environment at room temperature; the time embryos spend under pressure without significant loss in their survival could be lengthened by gradual decompression. Pressurisation at 0°C significantly reduced the survival capacity of the embryos; gradual decompression had no beneficial effect on survival at that stage. Based on the findings, the use of the phenomena is not applicable in this form, since pressure and low temperature together proved to be lethal to the embryos in these experiments. The application of hydrostatic pressure in embryo cryopreservation requires more detailed research, although the experience gained in this study can be applied usefully in different circumstances.


2021 ◽  
Vol 23 (10) ◽  
pp. 6182-6189
Author(s):  
Dariusz M. Niedzwiedzki

Photophysical properties of N719 and Z907, benchmark Ru-dyes used as sensitizers in dye-sensitized solar cells, were studied by static and time-resolved optical spectroscopy at room temperature and 160 K.


2015 ◽  
Vol 1123 ◽  
pp. 73-77 ◽  
Author(s):  
Yohanes Edi Gunanto ◽  
K. Sinaga ◽  
B. Kurniawan ◽  
S. Poertadji ◽  
H. Tanaka ◽  
...  

The study of the perovskite manganites La0.47Ca0.53Mn1-xCuxO3 with x = 0, 0.06, 0.09, and 0.13 has been done. The magnetic structure was determined using high-resolution neutron scattering at room temperature and low temperature. All samples were paramagnetic at room temperature and antiferromagnetic at low temperature. Using the SQUID Quantum Design, the samples showed that the doping of the insulating antiferromagnetic phase La0.47Ca0.53MnO3 with Cu doping resulted in the temperature transition from an insulator to metal state, and an antiferromagnetic to paramagnetic phase. The temperature transition from an insulator to metal state ranged from 23 to 100 K and from 200 to 230 K for the transition from an antiferromagnetic to paramagnetic phase.


MRS Bulletin ◽  
2000 ◽  
Vol 25 (11) ◽  
pp. 21-30 ◽  
Author(s):  
Joel S. Miller ◽  
Arthur J. Epstein

Molecule-based magnets are a broad, emerging class of magnetic materials that expand the materials properties typically associated with magnets to include low density, transparency, electrical insulation, and low-temperature fabrication, as well as combine magnetic ordering with other properties such as photoresponsiveness. Essentially all of the common magnetic phenomena associated with conventional transition-metal and rare-earth-based magnets can be found in molecule-based magnets. Although discovered less than two decades ago, magnets with ordering temperatures exceeding room temperature, very high (∼27.0 kOe or 2.16 MA/m) and very low (several Oe or less) coercivities, and substantial remanent and saturation magnetizations have been achieved. In addition, exotic phenomena including photoresponsiveness have been reported. The advent of molecule-based magnets offers new processing opportunities. For example, thin-film magnets can be prepared by means of low-temperature chemical vapor deposition and electrodeposition methods.


1980 ◽  
Vol 58 (9) ◽  
pp. 867-874 ◽  
Author(s):  
Osvald Knop ◽  
Wolfgang J. Westerhaus ◽  
Michael Falk

Available evidence suggests that (1) the stretching frequencies of highly-bent hydrogen bonds decrease with increasing temperature, regardless of whether the bonds are static or dynamic in character, to a single acceptor or to several competing acceptors; and (2) departures from symmetric trifurcation (or bifurcation) toward asymmetric situations lower the stretching frequency. In further support of these criteria isotopic probe ion spectra between 10 K and room temperature have been obtained for taurine and for trigonal (NH4)2MF6 (M = Si, Ge, Sn, Ti). Evidence of a low-temperature transition at 100(10) K in trigonal (NH4)2SnF6 is presented, and existence of the previously reported transition at 38.6 K in trigonal (NH4)2SiF6 is confirmed. Symmetry changes associated with these transitions are discussed.


Visual purple is soluble and stable in a mixture of glycerol and water (3:1). At room temperature the spectrum of such a solution is identical with that of the aqueous solution. At — 73° C the peak of the absorption curve is higher and narrower than at room temperature, and it is shifted towards longer waves. The product of photodecomposition at — 73° C has a spectrum in ­ dependent of pH and is at low temperatures thermostable and photostable, but at room temperature it decomposes therm ally to indicator yellow. The primary product appears to be identical with transient orange. The quantum yields of the photoreaction at low and at room temperature are of the same order.


1994 ◽  
Vol 98 (2) ◽  
pp. 429-435 ◽  
Author(s):  
M. Tachon ◽  
J. Pereyre ◽  
M. Lamotte ◽  
K. A. Muszkat ◽  
A. Jacob ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document