Characterization of OH Radical 306.4 nm Emission in Argon and Helium Reduced-Pressure ICPs

1987 ◽  
Vol 41 (4) ◽  
pp. 679-682 ◽  
Author(s):  
P. A. Fleitz ◽  
C. J. Seliskar

The A → X emission of OH at 306.4 nm has been studied in reduced-pressure inductively coupled argon and helium plasmas. Under a variety of conditions of power and flow rate, a comparison of the A state rotational level distributions shows significant differences in the two plasmas. The rotational level distributions are generally nonlinear but can be quantitatively described as the sum of two separate Boltzmann distributions.

2020 ◽  
Vol 35 (9) ◽  
pp. 2033-2056 ◽  
Author(s):  
Shi Jiao ◽  
John W. Olesik

Comprehensive characterization of ICP-SFMS matrix effects as function of analyte mass, matrix mass, focus lens voltage and nebulizer gas flow rate.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1327
Author(s):  
Dwinanto Sukamto ◽  
Monica Siroux ◽  
Francois Gloriant

The building sector is the largest consumer of energy, but there are still major scientific challenges in this field. The façade, being the interface between the exterior and interior space, plays a key role in the energy efficiency of a building. In this context, this paper focuses on a ventilated bioclimatic wall for nearly zero-energy buildings (NZEB). The aim of this study is to investigate an experimental setup based on a hot box for the characterization of the thermal performances of the ventilated wall. A specific ventilated prototype and an original thermal metrology are developed. This paper presents the ventilated prototype, the experimental setup, and the experimental results on the thermal performances of the ventilated wall. The influence of the air space thickness and the air flow rate on the thermal performances of the ventilated wall is studied.


2020 ◽  
Vol 35 (10) ◽  
pp. 2369-2377
Author(s):  
Helmar Wiltsche ◽  
Matthias Wolfgang

The MICAP is a microwave driven plasma source employing nitrogen as the plasma gas. In this work we compare LODs and LOQs obtained in axial viewing with those obtained by ICP-OES and evaluate the effect of air instead of nitrogen as the plasma gas.


Author(s):  
Riccardo Da Soghe ◽  
Cosimo Bianchini ◽  
Carl M. Sangan ◽  
James A. Scobie ◽  
Gary D. Lock

This paper deals with a numerical study aimed at the characterization of hot gas ingestion through turbine rim seals. The numerical campaign focused on an experimental facility which models ingress through the rim seal into the upstream wheel-space of an axial-turbine stage. Single-clearance arrangements were considered in the form of axial- and radial-seal gap configurations. With the radial-seal clearance configuration, CFD steady-state solutions were able to predict the system sealing effectiveness over a wide range of coolant mass flow rates reasonably well. The greater insight of flow field provided by the computations illustrates the thermal buffering effect when ingress occurs: for a given sealing flow rate, the effectiveness on the rotor was significantly higher than that on the stator due to the axial flow of hot gases from stator to rotor caused by pumping effects. The predicted effectiveness on the rotor was compared with a theoretical model for the thermal buffering effect showing good agreement. When the axial-seal clearance arrangement is considered, the agreement between CFD and experiments worsens; the variation of sealing effectiveness with coolant flow rate calculated by means of the simulations display a distinct kink. It was found that the “kink phenomenon” can be ascribed to an over-estimation of the egress spoiling effects due to turbulence modelling limitations. Despite some weaknesses in the numerical predictions, the paper shows that CFD can be used to characterize the sealing performance of axial- and radial-clearance turbine rim seals.


2014 ◽  
Vol 29 (6) ◽  
pp. 1132-1137 ◽  
Author(s):  
Lucia D'Ulivo ◽  
Lu Yang ◽  
Yong-Lai Feng ◽  
John Murimboh ◽  
Zoltán Mester

Accurate quantitation and characterization of organometals are successfully achieved by splitting the gas chromatography (GC) flow to both an electron ionization mass spectrometer (EIMS) and an inductively coupled plasma mass spectrometer (ICPMS).


Sign in / Sign up

Export Citation Format

Share Document