scholarly journals PyHIST: A Histological Image Segmentation Tool

2020 ◽  
Vol 16 (10) ◽  
pp. e1008349
Author(s):  
Manuel Muñoz-Aguirre ◽  
Vasilis F. Ntasis ◽  
Santiago Rojas ◽  
Roderic Guigó

The development of increasingly sophisticated methods to acquire high-resolution images has led to the generation of large collections of biomedical imaging data, including images of tissues and organs. Many of the current machine learning methods that aim to extract biological knowledge from histopathological images require several data preprocessing stages, creating an overhead before the proper analysis. Here we present PyHIST (https://github.com/manuel-munoz-aguirre/PyHIST), an easy-to-use, open source whole slide histological image tissue segmentation and preprocessing command-line tool aimed at tile generation for machine learning applications. From a given input image, the PyHIST pipeline i) optionally rescales the image to a different resolution, ii) produces a mask for the input image which separates the background from the tissue, and iii) generates individual image tiles with tissue content.

2020 ◽  
Author(s):  
Manuel Muñoz-Aguirre ◽  
Vasilis F. Ntasis ◽  
Roderic Guigó

AbstractThe development of increasingly sophisticated methods to acquire high resolution images has led to the generation of large collections of biomedical imaging data, including images of tissues and organs. Many of the current machine learning methods that aim to extract biological knowledge from histopathological images require several data preprocessing stages, creating an overhead before the proper analysis. Here we present PyHIST (https://github.com/manuel-munoz-aguirre/PyHIST), an easy-to-use, open source whole slide histological image tissue segmentation and preprocessing tool aimed at data preparation for machine learning applications.


2019 ◽  
Vol 621 ◽  
pp. A36 ◽  
Author(s):  
M. Tewes ◽  
T. Kuntzer ◽  
R. Nakajima ◽  
F. Courbin ◽  
H. Hildebrandt ◽  
...  

Cosmic shear, that is weak gravitational lensing by the large-scale matter structure of the Universe, is a primary cosmological probe for several present and upcoming surveys investigating dark matter and dark energy, such as Euclid or WFIRST. The probe requires an extremely accurate measurement of the shapes of millions of galaxies based on imaging data. Crucially, the shear measurement must address and compensate for a range of interwoven nuisance effects related to the instrument optics and detector, noise in the images, unknown galaxy morphologies, colors, blending of sources, and selection effects. This paper explores the use of supervised machine learning as a tool to solve this inverse problem. We present a simple architecture that learns to regress shear point estimates and weights via shallow artificial neural networks. The networks are trained on simulations of the forward observing process, and take combinations of moments of the galaxy images as inputs. A challenging peculiarity of the shear measurement task, in terms of machine learning applications, is the combination of the noisiness of the input features and the requirements on the statistical accuracy of the inverse regression. To address this issue, the proposed training algorithm minimizes bias over multiple realizations of individual source galaxies, reducing the sensitivity to properties of the overall sample of source galaxies. Importantly, an observational selection function of these source galaxies can be straightforwardly taken into account via the weights. We first introduce key aspects of our approach using toy-model simulations, and then demonstrate its potential on images mimicking Euclid data. Finally, we analyze images from the GREAT3 challenge, obtaining competitively low multiplicative and additive shear biases despite the use of a simple training set. We conclude that the further development of suited machine learning approaches is of high interest to meet the stringent requirements on the shear measurement in current and future surveys. We make a demonstration implementation of our technique publicly available.


Author(s):  
Tausifa Jan Saleem ◽  
Mohammad Ahsan Chishti

The rapid progress in domains like machine learning, and big data has created plenty of opportunities in data-driven applications particularly healthcare. Incorporating machine intelligence in healthcare can result in breakthroughs like precise disease diagnosis, novel methods of treatment, remote healthcare monitoring, drug discovery, and curtailment in healthcare costs. The implementation of machine intelligence algorithms on the massive healthcare datasets is computationally expensive. However, consequential progress in computational power during recent years has facilitated the deployment of machine intelligence algorithms in healthcare applications. Motivated to explore these applications, this paper presents a review of research works dedicated to the implementation of machine learning on healthcare datasets. The studies that were conducted have been categorized into following groups (a) disease diagnosis and detection, (b) disease risk prediction, (c) health monitoring, (d) healthcare related discoveries, and (e) epidemic outbreak prediction. The objective of the research is to help the researchers in this field to get a comprehensive overview of the machine learning applications in healthcare. Apart from revealing the potential of machine learning in healthcare, this paper will serve as a motivation to foster advanced research in the domain of machine intelligence-driven healthcare.


Author(s):  
Ivan Herreros

This chapter discusses basic concepts from control theory and machine learning to facilitate a formal understanding of animal learning and motor control. It first distinguishes between feedback and feed-forward control strategies, and later introduces the classification of machine learning applications into supervised, unsupervised, and reinforcement learning problems. Next, it links these concepts with their counterparts in the domain of the psychology of animal learning, highlighting the analogies between supervised learning and classical conditioning, reinforcement learning and operant conditioning, and between unsupervised and perceptual learning. Additionally, it interprets innate and acquired actions from the standpoint of feedback vs anticipatory and adaptive control. Finally, it argues how this framework of translating knowledge between formal and biological disciplines can serve us to not only structure and advance our understanding of brain function but also enrich engineering solutions at the level of robot learning and control with insights coming from biology.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1071
Author(s):  
Lucia Billeci ◽  
Asia Badolato ◽  
Lorenzo Bachi ◽  
Alessandro Tonacci

Alzheimer’s disease is notoriously the most common cause of dementia in the elderly, affecting an increasing number of people. Although widespread, its causes and progression modalities are complex and still not fully understood. Through neuroimaging techniques, such as diffusion Magnetic Resonance (MR), more sophisticated and specific studies of the disease can be performed, offering a valuable tool for both its diagnosis and early detection. However, processing large quantities of medical images is not an easy task, and researchers have turned their attention towards machine learning, a set of computer algorithms that automatically adapt their output towards the intended goal. In this paper, a systematic review of recent machine learning applications on diffusion tensor imaging studies of Alzheimer’s disease is presented, highlighting the fundamental aspects of each work and reporting their performance score. A few examined studies also include mild cognitive impairment in the classification problem, while others combine diffusion data with other sources, like structural magnetic resonance imaging (MRI) (multimodal analysis). The findings of the retrieved works suggest a promising role for machine learning in evaluating effective classification features, like fractional anisotropy, and in possibly performing on different image modalities with higher accuracy.


2021 ◽  
Vol 3 (2) ◽  
pp. 392-413
Author(s):  
Stefan Studer ◽  
Thanh Binh Bui ◽  
Christian Drescher ◽  
Alexander Hanuschkin ◽  
Ludwig Winkler ◽  
...  

Machine learning is an established and frequently used technique in industry and academia, but a standard process model to improve success and efficiency of machine learning applications is still missing. Project organizations and machine learning practitioners face manifold challenges and risks when developing machine learning applications and have a need for guidance to meet business expectations. This paper therefore proposes a process model for the development of machine learning applications, covering six phases from defining the scope to maintaining the deployed machine learning application. Business and data understanding are executed simultaneously in the first phase, as both have considerable impact on the feasibility of the project. The next phases are comprised of data preparation, modeling, evaluation, and deployment. Special focus is applied to the last phase, as a model running in changing real-time environments requires close monitoring and maintenance to reduce the risk of performance degradation over time. With each task of the process, this work proposes quality assurance methodology that is suitable to address challenges in machine learning development that are identified in the form of risks. The methodology is drawn from practical experience and scientific literature, and has proven to be general and stable. The process model expands on CRISP-DM, a data mining process model that enjoys strong industry support, but fails to address machine learning specific tasks. The presented work proposes an industry- and application-neutral process model tailored for machine learning applications with a focus on technical tasks for quality assurance.


2021 ◽  
Vol 11 (1) ◽  
pp. 32
Author(s):  
Oliwia Koteluk ◽  
Adrian Wartecki ◽  
Sylwia Mazurek ◽  
Iga Kołodziejczak ◽  
Andrzej Mackiewicz

With an increased number of medical data generated every day, there is a strong need for reliable, automated evaluation tools. With high hopes and expectations, machine learning has the potential to revolutionize many fields of medicine, helping to make faster and more correct decisions and improving current standards of treatment. Today, machines can analyze, learn, communicate, and understand processed data and are used in health care increasingly. This review explains different models and the general process of machine learning and training the algorithms. Furthermore, it summarizes the most useful machine learning applications and tools in different branches of medicine and health care (radiology, pathology, pharmacology, infectious diseases, personalized decision making, and many others). The review also addresses the futuristic prospects and threats of applying artificial intelligence as an advanced, automated medicine tool.


2021 ◽  
pp. 1-36
Author(s):  
Henry Prakken ◽  
Rosa Ratsma

This paper proposes a formal top-level model of explaining the outputs of machine-learning-based decision-making applications and evaluates it experimentally with three data sets. The model draws on AI & law research on argumentation with cases, which models how lawyers draw analogies to past cases and discuss their relevant similarities and differences in terms of relevant factors and dimensions in the problem domain. A case-based approach is natural since the input data of machine-learning applications can be seen as cases. While the approach is motivated by legal decision making, it also applies to other kinds of decision making, such as commercial decisions about loan applications or employee hiring, as long as the outcome is binary and the input conforms to this paper’s factor- or dimension format. The model is top-level in that it can be extended with more refined accounts of similarities and differences between cases. It is shown to overcome several limitations of similar argumentation-based explanation models, which only have binary features and do not represent the tendency of features towards particular outcomes. The results of the experimental evaluation studies indicate that the model may be feasible in practice, but that further development and experimentation is needed to confirm its usefulness as an explanation model. Main challenges here are selecting from a large number of possible explanations, reducing the number of features in the explanations and adding more meaningful information to them. It also remains to be investigated how suitable our approach is for explaining non-linear models.


Sign in / Sign up

Export Citation Format

Share Document