scholarly journals Global disruption in excitation-inhibition balance can cause localized network dysfunction and Schizophrenia-like context-integration deficits

2021 ◽  
Vol 17 (5) ◽  
pp. e1008985
Author(s):  
Olivia L. Calvin ◽  
A. David Redish

Poor context integration, the process of incorporating both previous and current information in decision making, is a cognitive symptom of schizophrenia. The maintenance of the contextual information has been shown to be sensitive to changes in excitation-inhibition (EI) balance. Many regions of the brain are sensitive to EI imbalances, however, so it is unknown how systemic manipulations affect the specific regions that are important to context integration. We constructed a multi-structure, biophysically-realistic agent that could perform context-integration as is assessed by the dot pattern expectancy task. The agent included a perceptual network, a memory network, and a decision making system and was capable of successfully performing the dot pattern expectancy task. Systemic manipulation of the agent’s EI balance produced localized dysfunction of the memory structure, which resulted in schizophrenia-like deficits at context integration. When the agent’s pyramidal cells were less excitatory, the agent fixated upon the cue and initiated responding later than the default agent, which were like the deficits one would predict that individuals on the autistic spectrum would make. This modelling suggests that it may be possible to parse between different types of context integration deficits by adding distractors to context integration tasks and by closely examining a participant’s reaction times.

Author(s):  
Chuck Hsiao ◽  
Michael Ruffino ◽  
Richard Malak ◽  
Irem Y. Tumer ◽  
Toni Doolen

This paper presents a taxonomy for project-level risk-mitigating actions developed from a large design organization’s risk database. The taxonomy classifies actions according to their purpose and how they are embodied. The taxonomy along with the results of actions recorded in the database can be used to evaluate the effectiveness of different types of risk-mitigating actions. A methodology for refining the taxonomy based on analyzing mismatches between different coders using the taxonomy is also given. Because the taxonomy is based on an existing legacy database, this paper discusses related issues such as missing contextual information. Developing this taxonomy will lead to further advances in empirically evaluating the usefulness of different risk-mitigating actions. This will allow for better understanding and improved prediction of how different types of risk-mitigating actions affect a project’s eventual outcomes such as cost and schedule, leading to future advances in decision-making approaches of risk-mitigating actions in complex environments.


2021 ◽  
Author(s):  
Tadaaki Nishioka ◽  
Tom Macpherson ◽  
Kosuke Hamaguchi ◽  
Takatoshi Hikida

To optimize decision making, animals need to execute not only a strategy to choose a good option but sometimes also one to avoid a bad option. A psychological study indicates that positive and negative information is processed in a different manner in the brain. The nucleus accumbens (NAc) contains two different types of neurons, dopamine D1 and D2 receptor-expressing neurons which are implicated in reward-based decision making and aversive learning. However, little is known about the neural mechanisms by which D1 or D2 receptor-expressing neurons in the NAc contribute to the execution of the strategy to choose a good option or one to avoid a bad option under decision making. Here, we have developed two novel visual discrimination tasks for mice to assess the strategy to choose a good option and one to avoid a bad option. By chemogenetically suppressing the subpopulation of the NAc neurons, we have shown that dopamine D2 receptor-expressing neurons in the NAc selectively contribute to the strategy to avoid a bad option under reward-based decision making. Furthermore, our optogenetic and calcium imaging experiments indicate that dopamine D2 receptor-expressing neurons are activated by error choices and the activation following an error plays an important role in optimizing the strategy in the next trial. Our findings suggest that the activation of D2 receptor-expressing neurons by error choices through learning enables animals to execute the appropriate strategy.


2017 ◽  
Vol 372 (1718) ◽  
pp. 20160192 ◽  
Author(s):  
Brian C. Coe ◽  
Douglas P. Munoz

The anti-saccade task has emerged as an important tool for investigating the complex nature of voluntary behaviour. In this task, participants are instructed to suppress the natural response to look at a peripheral visual stimulus and look in the opposite direction instead. Analysis of saccadic reaction times (SRT: the time from stimulus appearance to the first saccade) and the frequency of direction errors (i.e. looking toward the stimulus) provide insight into saccade suppression mechanisms in the brain. Some direction errors are reflexive responses with very short SRTs (express latency saccades), while other direction errors are driven by automated responses and have longer SRTs. These different types of errors reveal that the anti-saccade task requires different forms of suppression, and neurophysiological experiments in macaques have revealed several potential mechanisms. At the start of an anti-saccade trial, pre-emptive top-down inhibition of saccade generating neurons in the frontal eye fields and superior colliculus must be present before the stimulus appears to prevent express latency direction errors. After the stimulus appears, voluntary anti-saccade commands must compete with, and override, automated visually initiated saccade commands to prevent longer latency direction errors. The frequencies of these types of direction errors, as well as SRTs, change throughout the lifespan and reveal time courses for development, maturation, and ageing. Additionally, patients diagnosed with a variety of neurological and/or psychiatric disorders affecting the frontal lobes and/or basal ganglia produce markedly different SRT distributions and types of direction errors, which highlight specific deficits in saccade suppression and inhibitory control. The anti-saccade task therefore provides valuable insight into the neural mechanisms of saccade suppression and is a valuable tool in a clinical setting. This article is part of the themed issue ‘Movement suppression: brain mechanisms for stopping and stillness’.


2021 ◽  
Vol 15 ◽  
Author(s):  
Leijun Ye ◽  
Chunhe Li

The decision making function is governed by the complex coupled neural circuit in the brain. The underlying energy landscape provides a global picture for the dynamics of the neural decision making system and has been described extensively in the literature, but often as illustrations. In this work, we explicitly quantified the landscape for perceptual decision making based on biophysically-realistic cortical network with spiking neurons to mimic a two-alternative visual motion discrimination task. Under certain parameter regions, the underlying landscape displays bistable or tristable attractor states, which quantify the transition dynamics between different decision states. We identified two intermediate states: the spontaneous state which increases the plasticity and robustness of changes of minds and the “double-up” state which facilitates the state transitions. The irreversibility of the bistable and tristable switches due to the probabilistic curl flux demonstrates the inherent non-equilibrium characteristics of the neural decision system. The results of global stability of decision-making quantified by barrier height inferred from landscape topography and mean first passage time are in line with experimental observations. These results advance our understanding of the stochastic and dynamical transition mechanism of decision-making function, and the landscape and kinetic path approach can be applied to other cognitive function related problems (such as working memory) in brain networks.


2017 ◽  
Vol 2 (15) ◽  
pp. 9-23 ◽  
Author(s):  
Chorong Oh ◽  
Leonard LaPointe

Dementia is a condition caused by and associated with separate physical changes in the brain. The signs and symptoms of dementia are very similar across the diverse types, and it is difficult to diagnose the category by behavioral symptoms alone. Diagnostic criteria have relied on a constellation of signs and symptoms, but it is critical to understand the neuroanatomical differences among the dementias for a more precise diagnosis and subsequent management. With this regard, this review aims to explore the neuroanatomical aspects of dementia to better understand the nature of distinctive subtypes, signs, and symptoms. This is a review of English language literature published from 1996 to the present day of peer-reviewed academic and medical journal articles that report on older people with dementia. This review examines typical neuroanatomical aspects of dementia and reinforces the importance of a thorough understanding of the neuroanatomical characteristics of the different types of dementia and the differential diagnosis of them.


2017 ◽  
Vol 76 (3) ◽  
pp. 107-116 ◽  
Author(s):  
Klea Faniko ◽  
Till Burckhardt ◽  
Oriane Sarrasin ◽  
Fabio Lorenzi-Cioldi ◽  
Siri Øyslebø Sørensen ◽  
...  

Abstract. Two studies carried out among Albanian public-sector employees examined the impact of different types of affirmative action policies (AAPs) on (counter)stereotypical perceptions of women in decision-making positions. Study 1 (N = 178) revealed that participants – especially women – perceived women in decision-making positions as more masculine (i.e., agentic) than feminine (i.e., communal). Study 2 (N = 239) showed that different types of AA had different effects on the attribution of gender stereotypes to AAP beneficiaries: Women benefiting from a quota policy were perceived as being more communal than agentic, while those benefiting from weak preferential treatment were perceived as being more agentic than communal. Furthermore, we examined how the belief that AAPs threaten men’s access to decision-making positions influenced the attribution of these traits to AAP beneficiaries. The results showed that men who reported high levels of perceived threat, as compared to men who reported low levels of perceived threat, attributed more communal than agentic traits to the beneficiaries of quotas. These findings suggest that AAPs may have created a backlash against its beneficiaries by emphasizing gender-stereotypical or counterstereotypical traits. Thus, the framing of AAPs, for instance, as a matter of enhancing organizational performance, in the process of policy making and implementation, may be a crucial tool to countering potential backlash.


2010 ◽  
Vol 24 (4) ◽  
pp. 249-252 ◽  
Author(s):  
Márk Molnár ◽  
Roland Boha ◽  
Balázs Czigler ◽  
Zsófia Anna Gaál

This review surveys relevant and recent data of the pertinent literature regarding the acute effect of alcohol on various kinds of memory processes with special emphasis on working memory. The characteristics of different types of long-term memory (LTM) and short-term memory (STM) processes are summarized with an attempt to relate these to various structures in the brain. LTM is typically impaired by chronic alcohol intake but according to some data a single dose of ethanol may have long lasting effects if administered at a critically important age. The most commonly seen deleterious acute effect of alcohol to STM appears following large doses of ethanol in conditions of “binge drinking” causing the “blackout” phenomenon. However, with the application of various techniques and well-structured behavioral paradigms it is possible to detect, albeit occasionally, subtle changes of cognitive processes even as a result of a low dose of alcohol. These data may be important for the consideration of legal consequences of low-dose ethanol intake in conditions such as driving, etc.


2015 ◽  
Vol 1 (1) ◽  
pp. 29-34
Author(s):  
Sergei Shvorov ◽  
◽  
Dmitry Komarchuk ◽  
Peter Ohrimenko ◽  
Dmitry Chyrchenko ◽  
...  

2020 ◽  
Author(s):  
Lluís Hernández-Navarro ◽  
Ainhoa Hermoso-Mendizabal ◽  
Daniel Duque ◽  
Alexandre Hyafil ◽  
Jaime de la Rocha

It is commonly assumed that, during perceptual decisions, the brain integrates stimulus evidence until reaching a decision, and then performs the response. There are conditions, however (e.g. time pressure), in which the initiation of the response must be prepared in anticipation of the stimulus presentation. It is therefore not clear when the timing and the choice of perceptual responses depend exclusively on evidence accumulation, or when preparatory motor signals may interfere with this process. Here, we find that, in a free reaction time auditory discrimination task in rats, the timing of fast responses does not depend on the stimulus, although the choices do, suggesting a decoupling of the mechanisms of action initiation and choice selection. This behavior is captured by a novel model, the Parallel Sensory Integration and Action Model (PSIAM), in which response execution is triggered whenever one of two processes, Action Initiation or Evidence Accumulation, reaches a bound, while choice category is always set by the latter. Based on this separation, the model accurately predicts the distribution of reaction times when the stimulus is omitted, advanced or delayed. Furthermore, we show that changes in Action Initiation mediates both post-error slowing and a gradual slowing of the responses within each session. Overall, these results extend the standard models of perceptual decision-making, and shed a new light on the interaction between action preparation and evidence accumulation.


Sign in / Sign up

Export Citation Format

Share Document