scholarly journals Hybrid seed incompatibility in Capsella is connected to chromatin condensation defects in the endosperm

PLoS Genetics ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. e1009370
Author(s):  
Katarzyna Dziasek ◽  
Lauriane Simon ◽  
Clément Lafon-Placette ◽  
Benjamin Laenen ◽  
Cecilia Wärdig ◽  
...  

Hybridization of closely related plant species is frequently connected to endosperm arrest and seed failure, for reasons that remain to be identified. In this study, we investigated the molecular events accompanying seed failure in hybrids of the closely related species pair Capsella rubella and C. grandiflora. Mapping of QTL for the underlying cause of hybrid incompatibility in Capsella identified three QTL that were close to pericentromeric regions. We investigated whether there are specific changes in heterochromatin associated with interspecific hybridizations and found a strong reduction of chromatin condensation in the endosperm, connected with a strong loss of CHG and CHH methylation and random loss of a single chromosome. Consistent with reduced DNA methylation in the hybrid endosperm, we found a disproportionate deregulation of genes located close to pericentromeric regions, suggesting that reduced DNA methylation allows access of transcription factors to targets located in heterochromatic regions. Since the identified QTL were also associated with pericentromeric regions, we propose that relaxation of heterochromatin in response to interspecies hybridization exposes and activates loci leading to hybrid seed failure.

2020 ◽  
Author(s):  
Katarzyna Dziasek ◽  
Lauriane Simon ◽  
Clément Lafon Placette ◽  
Benjamin Laenen ◽  
Cecilia Wärdig ◽  
...  

AbstractHybridization of closely related plant species is frequently connected to endosperm arrest and seed failure, for reasons that remain to be identified. In this study, we investigated the molecular events accompanying seed failure in hybrids of the closely related species pair Capsella rubella and C. grandiflora. Mapping of QTLs for the underlying cause of hybrid incompatibility in Capsella revealed three QTLs that were close to pericentromeric regions. This prompted us to investigate whether there are specific changes in heterochromatin associated with interspecific hybridizations. Indeed, we found that chromatin was less condensed in the endosperm, while the embryo was not affected. Loss of chromosome condensation was connected with a strong loss of CHG and CHH methylation and mitotic abnormalities. Genome-wide sequencing of hybrid endosperm revealed that the chromosome loss was random and was likely a consequence of reduced chromatin condensation. Consistent with reduced DNA methylation in hybrid endosperm, we found a disproportionate deregulation of genes located close to pericentromeric regions. Among those deregulated genes there were many potential targets of the AGAMOUS-LIKE transcription factor PHERES1, suggesting that reduced DNA methylation allows PHERES1 to hyperactivate its targets. Since the identified QTLs were also associated with pericentromeric regions, we conclude that relaxation of heterochromatin in response to interspecies hybridization exposes and activates loci leading to hybrid seed failure.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Diana Buitrago ◽  
Mireia Labrador ◽  
Juan Pablo Arcon ◽  
Rafael Lema ◽  
Oscar Flores ◽  
...  

AbstractDetermining the effect of DNA methylation on chromatin structure and function in higher organisms is challenging due to the extreme complexity of epigenetic regulation. We studied a simpler model system, budding yeast, that lacks DNA methylation machinery making it a perfect model system to study the intrinsic role of DNA methylation in chromatin structure and function. We expressed the murine DNA methyltransferases in Saccharomyces cerevisiae and analyzed the correlation between DNA methylation, nucleosome positioning, gene expression and 3D genome organization. Despite lacking the machinery for positioning and reading methylation marks, induced DNA methylation follows a conserved pattern with low methylation levels at the 5’ end of the gene increasing gradually toward the 3’ end, with concentration of methylated DNA in linkers and nucleosome free regions, and with actively expressed genes showing low and high levels of methylation at transcription start and terminating sites respectively, mimicking the patterns seen in mammals. We also see that DNA methylation increases chromatin condensation in peri-centromeric regions, decreases overall DNA flexibility, and favors the heterochromatin state. Taken together, these results demonstrate that methylation intrinsically modulates chromatin structure and function even in the absence of cellular machinery evolved to recognize and process the methylation signal.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1798-1798
Author(s):  
Brian A Walker ◽  
Paola E. Leone ◽  
Nicholas J Dickens ◽  
Kevin D Boyd ◽  
David Gonzalez ◽  
...  

Abstract Abstract 1798 Poster Board I-824 Histone modifications are known to mediate transcriptional regulation through changes in chromatin condensation and as such can lead to aberrant transcriptional patterns resulting in malignant transformation. Modulation of chromatin structure via histone modification is becoming recognised as an important pathogenic mechanism in myeloma and has been suggested by the over-expression of MMSET, a histone methyltransferase, by the t(4;14) chromosomal rearrangement. More recently inactivation of UTX, a histone demethylase, has also been suggested to have a role in myeloma pathogenesis and both UTX and MMSET are mediators of transcriptional repression. UTX is inactivated in a number of different cancer cell lines but importantly, mutations and deletions have been detected in myeloma cell lines and we wished to follow up on this observation in uniformly treated clinical cases. UTX is a large gene found on the X chromosome covering 240 kb of genomic DNA and consists of 29 exons encoding a protein with both JmjC-domains and tricopeptide repeats responsible for histone demethylation and polycomb protein interactions. Inactivation of UTX occurs through deletions of individual exons through to large whole gene deletions as well as by mutations scattered throughout the 29 exons. A further mechanism of UTX inactivation which has not been looked for to date is via DNA methylation of the CpG island upstream of the transcriptional start site. We set out to determine the status of UTX in our dataset which includes expression, mapping, and methylation array data from presenting myeloma samples entered into the MRC Myeloma IX clinical trial. The gene expression of UTX was measured on 272 samples using Affymetrix U133 Plus 2.0 arrays and showed that 80% of samples do not express UTX transcripts but using expression quartile analysis we could not detect an effect on overall survival. The mechanism underlying the abrogation of expression was investigated further using the Affymetrix 500K SNP mapping array on a subset of 114 samples to detect copy number alterations. UTX was hemizygously deleted in 21 (42%) female samples and was completely deleted in 1 male sample, at the resolution of the arrays. In order to determine if individual exons were deleted, at a resolution below that detectable by mapping arrays, we performed quantitative PCR coupled with high resolution melting (HRM) analysis using the Rotor-gene Q real-time cycler (Qiagen). Exons were amplified, over 40 cycles, to obtain products of ∼200 bp using LC Green Plus mastermix (Idaho Technologies) in a 10 μl reaction on the Rotor-gene Q with a final HRM step from 72-95 °C with increments of 0.1 °C. Amplification plots combined with the HRM step allows us to identify both homozygous deletions and mutations within the exons. We screened all 114 samples for micro-deletions and mutations and found homozygous deletions in ∼7% of samples and identified a significant proportion of mutations using the HRM method which accounted for a total of ∼10% of gene inactivation. In order to determine if methylation could be responsible for inactivation of the remaining allele we used the Illumina Infinium humanmethylation27 array to study the methylation status at the UTX locus. This array interrogates 27,578 highly informative CpG sites per sample at the single-nucleotide resolution using bisulfite converted DNA. The results of this analysis are presented as an average beta-score where 1.0 is fully methylated and 0 is fully unmethylated. Samples were analyzed using Illumina GenomeStudio and the custom differential methylation algorithm. In samples with a diploid copy number of UTX the methylation signals covered 2 ranges: hemi-methylated (0.35-0.55, n=7) and hyper-methylated (0.73-0.89, n=14). In samples with 1 copy of UTX, which includes all males, there were 3 ranges: hypomethylated (0.08-0.21, n=5), hemi-methylated (0.35-0.51, n=3), and hypermethylated (0.66-0.88, n=48). All of the hypomethylated samples with a single copy of UTX were male, and at least 1 of these samples contained an inactivating exonic deletion resulting in complete loss of function. These data indicate that methylation of the residual allele contributes significantly to the inactivation of UTX along with interstitial deletions and mutations. We will go on to present data on the interaction of UTX with variation at the UTY locus and how this modulates behaviour of the myeloma clone. Disclosures No relevant conflicts of interest to declare.


2007 ◽  
Vol 177 (3) ◽  
pp. 401-411 ◽  
Author(s):  
Nick Gilbert ◽  
Inga Thomson ◽  
Shelagh Boyle ◽  
James Allan ◽  
Bernard Ramsahoye ◽  
...  

DNA methylation has been implicated in chromatin condensation and nuclear organization, especially at sites of constitutive heterochromatin. How this is mediated has not been clear. In this study, using mutant mouse embryonic stem cells completely lacking in DNA methylation, we show that DNA methylation affects nuclear organization and nucleosome structure but not chromatin compaction. In the absence of DNA methylation, there is increased nuclear clustering of pericentric heterochromatin and extensive changes in primary chromatin structure. Global levels of histone H3 methylation and acetylation are altered, and there is a decrease in the mobility of linker histones. However, the compaction of both bulk chromatin and heterochromatin, as assayed by nuclease digestion and sucrose gradient sedimentation, is unaltered by the loss of DNA methylation. This study shows how the complete loss of a major epigenetic mark can have an impact on unexpected levels of chromatin structure and nuclear organization and provides evidence for a novel link between DNA methylation and linker histones in the regulation of chromatin structure.


2021 ◽  
Author(s):  
Anabel Martinez-Bengochea ◽  
Susanne Kneitz ◽  
Amaury Herpin ◽  
Rafael Henrique Nóbrega ◽  
Mateus C. Adolfi ◽  
...  

Abstract Fish are amongst vertebrates the group with the highest diversity of known sex-determining genes. Particularly, the genus Oryzias is a suitable taxon to understand how different sex determination genetic networks evolved in closely related species. Two closely related species, O. latipes and O. curvinotus, do not only share the same XX/XY sex chromosome system, but also the same male sex-determining gene, dmrt1bY. We performed whole mRNA transcriptomes and morphology analyses of the gonads of hybrids resulting from reciprocal crosses between O. latipes and O. curvinotus. XY male hybrids, presenting meiotic arrest and no production of sperm were sterile, and about 30% of the XY hybrids underwent male-to-female sex reversal. Both XX and XY hybrid females exhibited reduced fertility and developed ovotestis while aging. Transcriptome data showed that male-related genes are upregulated in the XX and XY female hybrids. The transcriptomes of both types of female and of the male gonads are characterized by upregulation of meiosis and germ cell differentiation genes. Differences in the parental species in the downstream pathways of sexual development could explain sex reversal, sterility, and the development of intersex gonads in the hybrids. Our results provide molecular clues for the proximate mechanisms of hybrid incompatibility and Haldane’s rule.


2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Tom Hill ◽  
Hazel-Lynn Rosales-Stephens ◽  
Robert L Unckless

AbstractProteins involved in post-copulatory interactions between males and females are among the fastest evolving genes in many species, usually attributed to their involvement in reproductive conflict. As a result, these proteins are thought to often be involved in the formation of postmating-prezygotic incompatibilities between species. The Drosophila dunni subgroup consists of a dozen recently diverged species found across the Caribbean islands with varying levels of hybrid incompatibility. We performed experimental crosses between species in the dunni group and see some evidence of hybrid incompatibilities. We also find evidence of reduced survival following hybrid mating, likely due to postmating-prezygotic incompatibilities. We assessed rates of evolution between these species genomes and find evidence of rapid evolution and divergence of some reproductive proteins, specifically the seminal fluid proteins. This work suggests the rapid evolution of seminal fluid proteins may be associated with postmating-prezygotic isolation, which acts as a barrier for gene flow between even the most closely related species.


2013 ◽  
Vol 25 (1) ◽  
pp. 150 ◽  
Author(s):  
M. B. Rahman ◽  
M. M. Kamal ◽  
T. Rijsselaere ◽  
L. Vandaele ◽  
M. Shamsuddin ◽  
...  

Soon after fertilization, mammalian zygotes need proper DNA methylation reprogramming, at which time the epigenetic marks that the oocyte and sperm have acquired during gametogenesis are erased to allow totipotent zygotic development. Aberrant epigenetic marks in the paternal genome are thought to be associated with altered chromatin condensation in spermatozoa of suboptimal quality. We have recently reported that heat stress on bulls during germ cell development, especially at the spermiogenesis stage, altered sperm chromatin condensation. The objective of this study was to investigate dynamic DNA methylation reprogramming in the male pronucleus after fertilization of oocytes with sperm known to have altered chromatin conformation. To evaluate dynamic DNA methylation reprogramming, zygotes collected at 3 different time points [i.e. 12, 18, and 24 h post-insemination (hpi)] were immunocytochemically investigated using an antibody against 5-methylcytosine (5mC). The total fluorescence intensity of the male pronuclei (n = 89, ≥25 in each group) was measured by ImageJ and data were analyzed by ANOVA. The DNA methylation pattern in male pronuclei when oocytes were fertilized with heat-stressed sperm did not change between time points (P > 0.05), whereas control zygotes clearly showed demethylation and de novo methylation at 18 and 24 hpi, respectively. The results of this study indicated that dynamic DNA methylation reprogramming patterns such as DNA demethylation followed by de novo methylation in the male pronucleus soon after fertilization were altered when oocytes were fertilized with heat-stressed sperm. In conclusion, altered sperm chromatin conformation due to heat stress perturbs dynamic DNA methylation reprogramming in the male pronucleus, which may hamper nuclear totipotency and embryo survival.


Author(s):  
Satya P. Gupta ◽  
Anjana Sharma ◽  
Vaishali M. Patil

: Cancer is an uncontrolled malignant tumor growth taking place in any tissue of the body and attains complex diversity which makes it difficult for oncologists to choose therapeutics. The changes leading to formation of cancerous cells occur due to a series of molecular events. Now scientists are trying to understand the various molecular processes that are involved in the growth of cancers. This article presents a brief account of the epigenetics with reference to DNA methylation and histone modification as an important contributor for formation of cancer cells. Drug targeting the epigenetic regulators has been considered for various types of cancer. The enzymes in DNA methylation and histone modification, FDA approved clinical drugs along with the challenges associated with the development of anti-cancer target based therapeutics are summarized.


Agronomy ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 225 ◽  
Author(s):  
Jorge Angeles ◽  
Jickerson Lado ◽  
Evangeline Pascual ◽  
Cristeta Cueto ◽  
Antonio Laurena ◽  
...  

The coconut is a major crop of many tropical countries, with the endosperm being one of its main products. The coconut soft-endosperm variants, the Makapuno and the Lono, are emerging as economically important. This review describes this crop, its salient endosperm phenotypes and the prevailing hypotheses associated with these. We also collate the literature on the Makapuno and provide a comprehensive review of the scarce information on the Lono. We review the current tenets of plant DNA methylation and provide examples of altered phenotypes associated with such methylation changes. We explore how the changes in the methylome affect endosperm development and the tissue culture process. We further cite the epigenetic basis of an altered endosperm phenotype of a closely related species to the coconut, the oil palm. We discuss how such modifications could affect coconut endosperm development, yielding the Makapuno and Lono phenotypes.


2020 ◽  
Vol 117 (47) ◽  
pp. 29786-29794
Author(s):  
Yuan Lu ◽  
Angel Sandoval ◽  
Sarah Voss ◽  
Zhao Lai ◽  
Susanne Kneitz ◽  
...  

Mixing genomes of different species by hybridization can disrupt species-specific genetic interactions that were adapted and fixed within each species population. Such disruption can predispose the hybrids to abnormalities and disease that decrease the overall fitness of the hybrids and is therefore named as hybrid incompatibility. Interspecies hybridization between southern platyfish and green swordtails leads to lethal melanocyte tumorigenesis. This occurs in hybrids with tumor incidence following progeny ratio that is consistent with two-locus interaction, suggesting melanoma development is a result of negative epistasis. Such observations makeXiphophorusone of the only two vertebrate hybrid incompatibility examples in which interacting genes have been identified. One of the two interacting loci has been characterized as a mutant epidermal growth factor receptor. However, the other locus has not been identified despite over five decades of active research. Here we report the localization of the melanoma regulatory locus to a single gene,rab3d, which shows all expected features of the long-sought oncogene interacting locus. Our findings provide insights into the role ofegfrregulation in regard to cancer etiology. Finally, they provide a molecular explainable example of hybrid incompatibility.


Sign in / Sign up

Export Citation Format

Share Document