scholarly journals Motor domain-mediated autoinhibition dictates axonal transport by the kinesin UNC-104/KIF1A

PLoS Genetics ◽  
2021 ◽  
Vol 17 (11) ◽  
pp. e1009940
Author(s):  
Dezi Cong ◽  
Jinqi Ren ◽  
Yurong Zhou ◽  
Shuang Wang ◽  
Jingjing Liang ◽  
...  

The UNC-104/KIF1A motor is crucial for axonal transport of synaptic vesicles, but how the UNC-104/KIF1A motor is activated in vivo is not fully understood. Here, we identified point mutations located in the motor domain or the inhibitory CC1 domain, which resulted in gain-of-function alleles of unc-104 that exhibit hyperactive axonal transport and abnormal accumulation of synaptic vesicles. In contrast to the cell body localization of wild type motor, the mutant motors accumulate on neuronal processes. Once on the neuronal process, the mutant motors display dynamic movement similarly to wild type motors. The gain-of-function mutation on the motor domain leads to an active dimeric conformation, releasing the inhibitory CC1 region from the motor domain. Genetically engineered mutations in the motor domain or CC1 of UNC-104, which disrupt the autoinhibitory interface, also led to the gain of function and hyperactivation of axonal transport. Thus, the CC1/motor domain-mediated autoinhibition is crucial for UNC-104/KIF1A-mediated axonal transport in vivo.

1998 ◽  
Vol 42 (7) ◽  
pp. 1811-1814 ◽  
Author(s):  
Leonardo K. Basco ◽  
Rachida Tahar ◽  
Pascal Ringwald

ABSTRACT In vitro sulfadoxine and pyrimethamine resistance has been associated with point mutations in the dihydropteroate synthase and dihydrofolate reductase domains, respectively, but the in vivo relevance of these point mutations has not been well established. To analyze the correlation between genotype and phenotype, 10 Cameroonian adult patients were treated with sulfadoxine-pyrimethamine and followed up for 28 days. After losses to follow-up (n = 1) or elimination of DNA samples due to mixed parasite populations with pyrimethamine-sensitive and pyrimethamine-resistant profiles (n = 3), parasite genomic DNA from day 0 blood samples of six patients were analyzed by DNA sequencing. Three patients who were cured had isolates characterized by a wild-type or mutant dihydrofolate reductase gene (with one or two mutations) and a wild-type dihydropteroate synthase gene. Three other patients who failed to respond to sulfadoxine-pyrimethamine treatment carried isolates with triple dihydrofolate reductase gene mutations and either a wild-type or a mutant dihydropteroate synthase gene. Three dihydrofolate reductase gene codons (51, 59, and 108) may be reliable genetic markers that can accurately predict the clinical outcome of sulfadoxine-pyrimethamine treatment in Africa.


2005 ◽  
Vol 25 (12) ◽  
pp. 4977-4992 ◽  
Author(s):  
Hao G. Nguyen ◽  
Dharmaraj Chinnappan ◽  
Takeshi Urano ◽  
Katya Ravid

ABSTRACT The kinase Aurora-B, a regulator of chromosome segregation and cytokinesis, is highly expressed in a variety of tumors. During the cell cycle, the level of this protein is tightly controlled, and its deregulated abundance is suspected to contribute to aneuploidy. Here, we provide evidence that Aurora-B is a short-lived protein degraded by the proteasome via the anaphase-promoting cyclosome complex (APC/c) pathway. Aurora-B interacts with the APC/c through the Cdc27 subunit, Aurora-B is ubiquitinated, and its level is increased upon treatment with inhibitors of the proteasome. Aurora-B binds in vivo to the degradation-targeting proteins Cdh1 and Cdc20, the overexpression of which accelerates Aurora-B degradation. Using deletions or point mutations of the five putative degradation signals in Aurora-B, we show that degradation of this protein does not depend on its D-boxes (RXXL), but it does require intact KEN boxes and A-boxes (QRVL) located within the first 65 amino acids. Cells transfected with wild-type or A-box-mutated or KEN box-mutated Aurora-B fused to green fluorescent protein display the protein localized to the chromosomes and then to the midzone during mitosis, but the mutated forms are detected at greater intensities. Hence, we identified the degradation pathway for Aurora-B as well as critical regions for its clearance. Intriguingly, overexpression of a stable form of Aurora-B alone induces aneuploidy and anchorage-independent growth.


2001 ◽  
Vol 280 (1) ◽  
pp. H361-H367 ◽  
Author(s):  
Maria L. Valencik ◽  
John A. McDonald

Communication between the extracellular matrix and the intracellular signal transduction and cytoskeletal system is mediated by integrin receptors. α5β1-Integrin and its cognate ligand fibronectin are essential in development of mesodermal structures, myocyte differentiation, and normal cardiac development. To begin to explore the potential roles of α5β1-integrin specifically in cardiomyocytes, we used a transgenic expression strategy. We overexpressed two forms of the human α5-integrin in cardiomyocytes: the full-length wild-type α5-integrin and a putative gain-of-function mutation created by truncating the cytoplasmic domain, designated α5-1-integrin. Overexpression of the wild-type α5-integrin has no detectable adverse effects in the mouse, whereas expression of α5-1-integrin caused electrocardiographic abnormalities, fibrotic changes in the ventricle, and perinatal lethality. Thus physiological regulation of integrin function appears essential for maintenance of normal cardiomyocyte structure and function. This strengthens the role of inside-out signaling in regulation of integrins in vivo and suggests that integrins and associated signaling molecules are important in cardiomyocyte function.


2006 ◽  
Vol 80 (1) ◽  
pp. 440-450 ◽  
Author(s):  
John W. Balliet ◽  
Priscilla A. Schaffer

ABSTRACT In vitro studies of herpes simplex virus type 1 (HSV-1) viruses containing mutations in core sequences of the viral origins of DNA replication, oriL and oriS, that eliminate the ability of these origins to initiate viral-DNA synthesis have demonstrated little or no effect on viral replication in cultured cells, leading to the conclusion that the two types of origins are functionally redundant. It remains unclear, therefore, why origins that appear to be redundant are maintained evolutionarily in HSV-1 and other neurotropic alphaherpesviruses. To test the hypothesis that oriL and oriS have distinct functions in the HSV-1 life cycle in vivo, we determined the in vivo phenotypes of two mutant viruses, DoriL-ILR and DoriS-I, containing point mutations in oriL and oriS site I, respectively, that eliminate origin DNA initiation function. Following corneal inoculation of mice, tear film titers of DoriS-I were reduced relative to wild-type virus. In all other tests, however, DoriS-I behaved like wild-type virus. In contrast, titers of DoriL-ILR in tear film, trigeminal ganglia (TG), and hindbrain were reduced and mice infected with DoriL-ILR exhibited greatly reduced mortality relative to wild-type virus. In the TG explant and TG cell culture models of reactivation, DoriL-ILR reactivated with delayed kinetics and, in the latter model, with reduced efficiency relative to wild-type virus. Rescuant viruses DoriL-ILR-R and DoriS-I-R behaved like wild-type virus in all tests. These findings demonstrate that functional differences exist between oriL and oriS and reveal a prominent role for oriL in HSV-1 pathogenesis.


2000 ◽  
Vol 20 (5) ◽  
pp. 1616-1625 ◽  
Author(s):  
Yang Chen ◽  
R. H. Goodman ◽  
Sarah M. Smolik

ABSTRACT CREB-binding protein (CBP) serves as a transcriptional coactivator in multiple signal transduction pathways. The Drosophilahomologue of CBP, dCBP, interacts with the transcription factors Cubitus interruptus (CI), MAD, and Dorsal (DL) and functions as a coactivator in several signaling pathways during Drosophiladevelopment, including the hedgehog (hh),decapentaplegic (dpp), and Tollpathways. Although dCBP is required for the expression of thehh target genes, wingless (wg) andpatched (ptc) in vivo, and potentiatesci-mediated transcriptional activation in vitro, it is not known that ci absolutely requires dCBP for its activity. We used a yeast genetic screen to identify several ci point mutations that disrupt CI-dCBP interactions. These mutant proteins are unable to transactivate a reporter gene regulated by cibinding sites and have a lower dCBP-stimulated activity than wild-type CI. When expressed exogenously in embryos, the CI point mutants cannot activate endogenous wg expression. Furthermore, a CI mutant protein that lacks the entire dCBP interaction domain functions as a negative competitor for wild-type CI activity, and the expression of dCBP antisense RNAs can suppress CI transactivation in Kc cells. Taken together, our data suggest that dCBP function is necessary forci-mediated transactivation of wg duringDrosophila embryogenesis.


1990 ◽  
Vol 10 (6) ◽  
pp. 2801-2808 ◽  
Author(s):  
D T Mooney ◽  
D B Pilgrim ◽  
E T Young

Point mutations in the presequence of the mitochondrial alcohol dehydrogerase isoenzyme (ADH III) have been shown to affect either the import of the precursor protein into yeast mitochondria in vivo or its processing within the organelle. In the present work, the behavior of these mutants during in vitro import into isolated mitochondria was investigated. All point mutants tested were imported with a slower initial rate than that of the wild-type precursor. This defect was corrected when the precursors were treated with urea prior to import. Once imported, the extent of processing to the mature form of mutant precursors varied greatly and correlated well with the defects observed in vivo. This result was not affected by prior urea treatment. When matrix extracts enriched for the processing protease were used, this defect was shown to be due to failure of the protease to efficiently recognize or cleave the presequence, rather than to a lack of access to the precursor. The rate of import of two ADH III precursors bearing internal deletions in the leader sequence was similar to those of the point mutants, whereas a deletion leading to the removal of the 15 amino-terminal amino acids was poorly imported. The mature amino terminus of wild-type ADH III was determined to be Gln-25. Mutant m01 (Ser-26 to Phe), which reduced the efficiency of cleavage in vitro by 80%, was cleaved at the correct site.


1986 ◽  
Vol 6 (6) ◽  
pp. 2098-2105 ◽  
Author(s):  
A G Wildeman ◽  
M Zenke ◽  
C Schatz ◽  
M Wintzerith ◽  
T Grundström ◽  
...  

HeLa cell nuclear extracts and wild-type or mutated simian virus 40 enhancer DNA were used in DNase I footprinting experiments to study the interaction of putative trans-acting factors with the multiple enhancer motifs. We show that these nuclear extracts contain proteins that bind to these motifs. Because point mutations which are detrimental to the activity of a particular enhancer motif in vivo specifically prevent protection of that motif against DNase I digestion in vivo, we suggest that the bound proteins correspond to trans-acting factors involved in enhancement of transcription. Using mutants in which the two domains A and B of the simian virus 40 enhancer are either separated by insertion of DNA fragments or inverted with respect to their natural orientation, we also demonstrate that the trans-acting factors bind independently to the two domains.


2007 ◽  
Vol 2007 ◽  
pp. 1-9 ◽  
Author(s):  
Luisa Ronga ◽  
Pasquale Palladino ◽  
Gabriella Saviano ◽  
Teodorico Tancredi ◽  
Ettore Benedetti ◽  
...  

The 173–195 segment corresponding to the helix 2 of the C-globular prion protein domain could be one of several “spots” of intrinsic conformational flexibility. In fact, it possesses chameleon conformational behaviour and gathers several disease-associated point mutations. We have performed spectroscopic studies on the wild-type fragment 173–195 and on its D178N mutant dissolved in trifluoroethanol to mimic the in vivo system, both in the presence and in the absence of metal cations. NMR data showed that the structure of the D178N mutant is characterized by two short helices separated by a kink, whereas the wild-type peptide is fully helical. Both peptides retained these structural organizations, as monitored by CD, in the presence of metal cations. NMR spectra were however not in favour of the formation of definite ion-peptide complexes. This agrees with previous evidence that other regions of the prion protein are likely the natural target of metal cation binding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2510-2510
Author(s):  
Akinori Yoda ◽  
Guillaume Adelmant ◽  
Nobuaki Shindoh ◽  
Bjoern Chapuy ◽  
Yuka Yoda ◽  
...  

Abstract To identify new oncogene alleles directly from primary tumor specimens, we generate and screen cDNA libraries from patient samples for gain-of-function alterations that can substitute for cytokine signaling in cytokine-dependent cells. Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive leukemia of plasmacytoid dendritic cells with a dismal prognosis. No driver oncogenes have been identified in cases of BPDCN. Screening of a cDNA library generated from a BPDCN resulted in multiple cytokine-independent clones that expressed a full-length transcript of GNB1 with a K89E mutation. GNB1 encodes a beta subunit of the heterotrimeric G-protein, a binding complex that transduces signals from G-protein coupled receptors to multiple downstream pathways. Gain-of-function mutations have been reported in alpha subunits of the G-protein, including GNAQ/GNA11 in uveal melanoma and GNAS in pituitary tumors, however, the contributions of beta subunits to cancer remains undefined. To investigate downstream signaling from GNB1 K89E, we performed gene expression profiling and mass spectrometry (MS)-based phosphoproteomics and found significant activation of RAS/MAPK and PI3K/AKT pathways in GNB1 K89E-expressing cells compared to isogenic cells expressing wild-type GNB1. ERK and AKT activation by GNB1 K89E were confirmed by western blotting. To target GNB1 K89E signaling, we screened kinase inhibitors using a multiplex assay of small molecules and found selective sensitivity of GNB1 K89E cells to MEK and pan-PI3-kinase inhibitors. To assay the transforming effects of GNB1 K89E in vivo, we transduced GNB1 (wild-type or K89E) into bone marrow from Cdkn2a-deficient donors after 5-FU treatment and transplanted into wild-type recipients. We opted to utilize Cdkn2a-deficient donors as the loss of CDKN2A is common in cases of BPDCN. Within 4 months after transplantation, all mice (n=10) that received bone marrow transduced with GNB1 K89E developed a lethal malignancy characterized by pancytopenia and massive hepatosplenomegaly. Spleens were infiltrated by large, spindly cells with extensive dendritic projections, as well as extensive fibrosis that completely effaced the normal splenic architecture. The cells were negative for T-cell (CD2, CD3) and B-cell (CD19, B220) markers but positive for the dendritic cell/macrophage markers MAC-2 and MAC-3. Further characterization by flow cytometry demonstrated that the cells infiltrating the spleen were CD8, CD103, MHC class II, CD26, FLT3 and CD11c positive, consistent with neoplastic dendritic cells. Serial transplantation of splenic cells from five different GNB1 K89E-transplanted mice into secondary wild-type recipients resulted in 100% fatality within 50 days. We searched published datasets from exome, transcriptome and whole genome sequencing of hematologic malignancies for GNB1 mutations. We identified one case of K89E in B-cell acute lymphoblastic leukemia (ALL), four cases with I80T/N in chronic lymphocytic leukemia or B-cell lymphomas, six cases with K57E/T in myeloid neoplasms, and D76G in T-cell ALL. Expression of any of these alleles but not wild-type GNB1 was sufficient to promote cytokine-independent growth of human TF1 cells. The published structure of GNB1 (Ford et al. Science 1998) reported a small number of residues, including K57, I80 and K89 that mediate interactions with both G-alpha subunits and effector proteins. In fact, affinity purification followed by MS using tagged GNB1 (wild-type, I80T and K89E) demonstrated that, unlike wild-type GNB1, the GNB1 mutants fail to bind distinct Gα subunits. The repertoire of protein interactors, which includes potential G protein effectors, also differed between different GNB1 alleles. Thus, gain-of-function mutations in GNB1 occur across a broad range of hematologic malignancies, modify essential interaction G-protein subunit interactions, can drive in vivo transformation, and activate targetable downstream kinases. Disclosures: Tyner: Incyte Corporation: Research Funding.


2021 ◽  
Author(s):  
Yuzu Anazawa ◽  
Tomoki Kita ◽  
Kumiko Hayashi ◽  
Shinsuke Niwa

KIF1A is a kinesin superfamily molecular motor that transports synaptic vesicle precursors in axons. Mutations in Kif1a lead to a group of neuronal diseases called KIF1A-associated neuronal disorder (KAND). KIF1A forms a homodimer and KAND mutations are mostly de novo and autosomal dominant; however, it is not known whether the function of wild-type KIF1A is inhibited by disease-associated KIF1A. No reliable in vivo model systems to analyze the molecular and cellular biology of KAND have been developed; therefore, here, we established Caenorhabditis elegans models for KAND using CRISPR/cas9 technology and analyzed defects in axonal transport. In the C. elegans models, heterozygotes and homozygotes exhibited reduced axonal transport phenotypes. In addition, we developed in vitro assays to analyze the motility of single heterodimers composed of wild-type KIF1A and disease-associated KIF1A. Disease-associated KIF1A significantly inhibited the motility of wild-type KIF1A when heterodimers were formed. These data indicate the molecular mechanism underlying the dominant nature of de novo KAND mutations.


Sign in / Sign up

Export Citation Format

Share Document