scholarly journals Increasing calling accuracy, coverage, and read-depth in sequence data by the use of haplotype blocks

PLoS Genetics ◽  
2021 ◽  
Vol 17 (12) ◽  
pp. e1009944
Author(s):  
Torsten Pook ◽  
Adnane Nemri ◽  
Eric Gerardo Gonzalez Segovia ◽  
Daniel Valle Torres ◽  
Henner Simianer ◽  
...  

High-throughput genotyping of large numbers of lines remains a key challenge in plant genetics, requiring geneticists and breeders to find a balance between data quality and the number of genotyped lines under a variety of different existing genotyping technologies when resources are limited. In this work, we are proposing a new imputation pipeline (“HBimpute”) that can be used to generate high-quality genomic data from low read-depth whole-genome-sequence data. The key idea of the pipeline is the use of haplotype blocks from the software HaploBlocker to identify locally similar lines and subsequently use the reads of all locally similar lines in the variant calling for a specific line. The effectiveness of the pipeline is showcased on a dataset of 321 doubled haploid lines of a European maize landrace, which were sequenced at 0.5X read-depth. The overall imputing error rates are cut in half compared to state-of-the-art software like BEAGLE and STITCH, while the average read-depth is increased to 83X, thus enabling the calling of copy number variation. The usefulness of the obtained imputed data panel is further evaluated by comparing the performance of sequence data in common breeding applications to that of genomic data generated with a genotyping array. For both genome-wide association studies and genomic prediction, results are on par or even slightly better than results obtained with high-density array data (600k). In particular for genomic prediction, we observe slightly higher data quality for the sequence data compared to the 600k array in the form of higher prediction accuracies. This occurred specifically when reducing the data panel to the set of overlapping markers between sequence and array, indicating that sequencing data can benefit from the same marker ascertainment as used in the array process to increase the quality and usability of genomic data.

2021 ◽  
Author(s):  
Torsten Pook ◽  
Adnane Nemri ◽  
Eric Gerardo Gonzalez Segovia ◽  
Henner Simianer ◽  
Chris Carolin Schoen

High-throughput genotyping of large numbers of lines remains a key challenge in plant genetics, requiring geneticists and breeders to find a balance between data quality and the number of genotyped lines under a variety of different existing technologies when resources are limited. In this work, we are proposing a new imputation pipeline ("HBimpute") that can be used to generate high-quality genomic data from low read-depth whole-genome-sequence data. The key idea of the pipeline is the use of haplotype blocks from the software HaploBlocker to identify locally similar lines and merge their reads locally. The effectiveness of the pipeline is showcased on a dataset of 321 doubled haploid lines of a European maize landrace, which were sequenced with 0.5X read-depth. Overall imputing error rates are cut in half compared to the state-of-the-art software BEAGLE, while the average read-depth is increased to 83X, thus enabling the calling of structural variation. The usefulness of the obtained imputed data panel is further evaluated by comparing the performance in common breeding applications to that of genomic data from a 600k array. In particular for genome-wide association studies, the sequence data is shown to be performing slightly better. Furthermore, genomic prediction based on the overlapping markers from the array and sequence is leading to a slightly higher predictive ability for the imputed sequence data, thereby indicating that the data quality obtained from low read-depth sequencing is on par or even slightly higher than high-density array data. When including all markers for the sequence data, the predictive ability is slightly reduced indicating overall lower data quality in non-array markers.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Alejandra Vergara-Lope ◽  
M. Reza Jabalameli ◽  
Clare Horscroft ◽  
Sarah Ennis ◽  
Andrew Collins ◽  
...  

Abstract Quantification of linkage disequilibrium (LD) patterns in the human genome is essential for genome-wide association studies, selection signature mapping and studies of recombination. Whole genome sequence (WGS) data provides optimal source data for this quantification as it is free from biases introduced by the design of array genotyping platforms. The Malécot-Morton model of LD allows the creation of a cumulative map for each choromosome, analogous to an LD form of a linkage map. Here we report LD maps generated from WGS data for a large population of European ancestry, as well as populations of Baganda, Ethiopian and Zulu ancestry. We achieve high average genetic marker densities of 2.3–4.6/kb. These maps show good agreement with prior, low resolution maps and are consistent between populations. Files are provided in BED format to allow researchers to readily utilise this resource.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Sunduimijid Bolormaa ◽  
Andrew A. Swan ◽  
Paul Stothard ◽  
Majid Khansefid ◽  
Nasir Moghaddar ◽  
...  

Abstract Background Imputation to whole-genome sequence is now possible in large sheep populations. It is therefore of interest to use this data in genome-wide association studies (GWAS) to investigate putative causal variants and genes that underpin economically important traits. Merino wool is globally sought after for luxury fabrics, but some key wool quality attributes are unfavourably correlated with the characteristic skin wrinkle of Merinos. In turn, skin wrinkle is strongly linked to susceptibility to “fly strike” (Cutaneous myiasis), which is a major welfare issue. Here, we use whole-genome sequence data in a multi-trait GWAS to identify pleiotropic putative causal variants and genes associated with changes in key wool traits and skin wrinkle. Results A stepwise conditional multi-trait GWAS (CM-GWAS) identified putative causal variants and related genes from 178 independent quantitative trait loci (QTL) of 16 wool and skin wrinkle traits, measured on up to 7218 Merino sheep with 31 million imputed whole-genome sequence (WGS) genotypes. Novel candidate gene findings included the MAT1A gene that encodes an enzyme involved in the sulphur metabolism pathway critical to production of wool proteins, and the ESRP1 gene. We also discovered a significant wrinkle variant upstream of the HAS2 gene, which in dogs is associated with the exaggerated skin folds in the Shar-Pei breed. Conclusions The wool and skin wrinkle traits studied here appear to be highly polygenic with many putative candidate variants showing considerable pleiotropy. Our CM-GWAS identified many highly plausible candidate genes for wool traits as well as breech wrinkle and breech area wool cover.


2019 ◽  
Author(s):  
M. Pérez-Enciso ◽  
L. C. Ramírez-Ayala ◽  
L.M. Zingaretti

AbstractBackgroundGenomic Prediction (GP) is the procedure whereby molecular information is used to predict complex phenotypes. Although GP can significantly enhance predictive accuracy, it can be expensive and difficult to implement. To help in designing optimum experiments, including genome wide association studies and genomic selection experiments, we have developed SeqBreed, a generic and flexible python3 forward simulator.ResultsSeqBreed accommodates sex and mitochondrion chromosomes as well as autopolyploidy. It can simulate any number of complex phenotypes determined by any number of causal loci. SeqBreed implements several GP methods, including single step GBLUP. We demonstrate its functionality with Drosophila Genome Reference Panel (DGRP) sequence data and with tetraploid potato genotypes.ConclusionsSeqBreed is a flexible and easy to use tool appropriate for optimizing GP or genome wide association studies. It incorporates some of the most popular GP methods and includes several visualization tools. Code is open and can be freely modified. Software, documentation and examples are available at https://github.com/miguelperezenciso/SeqBreed.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 541
Author(s):  
Long Chen ◽  
Jennie E. Pryce ◽  
Ben J. Hayes ◽  
Hans D. Daetwyler

Structural variations (SVs) are large DNA segments of deletions, duplications, copy number variations, inversions and translocations in a re-sequenced genome compared to a reference genome. They have been found to be associated with several complex traits in dairy cattle and could potentially help to improve genomic prediction accuracy of dairy traits. Imputation of SVs was performed in individuals genotyped with single-nucleotide polymorphism (SNP) panels without the expense of sequencing them. In this study, we generated 24,908 high-quality SVs in a total of 478 whole-genome sequenced Holstein and Jersey cattle. We imputed 4489 SVs with R2 > 0.5 into 35,568 Holstein and Jersey dairy cattle with 578,999 SNPs with two pipelines, FImpute and Eagle2.3-Minimac3. Genome-wide association studies for production, fertility and overall type with these 4489 SVs revealed four significant SVs, of which two were highly linked to significant SNP. We also estimated the variance components for SNP and SV models for these traits using genomic best linear unbiased prediction (GBLUP). Furthermore, we assessed the effect on genomic prediction accuracy of adding SVs to GBLUP models. The estimated percentage of genetic variance captured by SVs for production traits was up to 4.57% for milk yield in bulls and 3.53% for protein yield in cows. Finally, no consistent increase in genomic prediction accuracy was observed when including SVs in GBLUP.


2017 ◽  
Author(s):  
George S. Long ◽  
Mohammed Hussen ◽  
Jonathan Dench ◽  
Stéphane Aris-Brosou

AbstractA critical goal in biology is to relate the phenotype to the genotype, that is, to find the genetic determinants of various traits. However, while simple monofactorial determinants are relatively easy to identify, the underpinnings of complex phenotypes are harder to predict. While traditional approaches rely on genome-wide association studies based on Single Nucleotide Polymorphism data, the ability of machine learning algorithms to find these determinants in whole proteome data is still not well known. To better understand the applicability of machine learning in this case, we implemented two such algorithms, adaptive boosting (AB) and repeated random forest (RRF), and developed a chunking layer that facilitates the analysis of whole proteome data. We first assessed the performance of these algorithms and tuned them on an influenza data set, for which the determinants of three complex phenotypes (in-fectivity, transmissibility, and pathogenicity) are known based on experimental evidence. This allowed us to show that chunking improves runtimes by an order of magnitude. Based on simulations, we showed that chunking also increases sensitivity of the predictions, reaching 100% with as few as 20 sequences in a small proteome as in the influenza case (5k sites), but may require at least 30 sequences to reach 90% on larger alignments (500k sites). While RRF has less specificity than RF, it was never < 50%, and RRF sensitivity was significantly higher at smaller chunk sizes. We then used these algorithms to predict the determinants of three types of drug resistance (to Ciprofloxacin, Ceftazidime, and Gentamicin) in a bacterium, Pseudomonas aeruginosa. While both algorithms performed well in the case of the influenza data, results were more nuanced in the bacterial case, with RRF making more sensible predictions, with smaller errors rates, than AB. Altogether, we demonstrated that ML algorithms can be used to identify genetic determinants in small proteomes (viruses), even when trained on small numbers of individuals. We further showed that our RRF algorithm may deserve more scrutiny, which should be facilitated by the decreasing costs of both sequencing and phenotyping of large cohorts of individuals.


2018 ◽  
Vol 19 (1) ◽  
pp. 73-96 ◽  
Author(s):  
Sayantan Das ◽  
Gonçalo R. Abecasis ◽  
Brian L. Browning

Genotype imputation has become a standard tool in genome-wide association studies because it enables researchers to inexpensively approximate whole-genome sequence data from genome-wide single-nucleotide polymorphism array data. Genotype imputation increases statistical power, facilitates fine mapping of causal variants, and plays a key role in meta-analyses of genome-wide association studies. Only variants that were previously observed in a reference panel of sequenced individuals can be imputed. However, the rapid increase in the number of deeply sequenced individuals will soon make it possible to assemble enormous reference panels that greatly increase the number of imputable variants. In this review, we present an overview of genotype imputation and describe the computational techniques that make it possible to impute genotypes from reference panels with millions of individuals.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chao-Yu Guo ◽  
Reng-Hong Wang ◽  
Hsin-Chou Yang

AbstractAfter the genome-wide association studies (GWAS) era, whole-genome sequencing is highly engaged in identifying the association of complex traits with rare variations. A score-based variance-component test has been proposed to identify common and rare genetic variants associated with complex traits while quickly adjusting for covariates. Such kernel score statistic allows for familial dependencies and adjusts for random confounding effects. However, the etiology of complex traits may involve the effects of genetic and environmental factors and the complex interactions between genes and the environment. Therefore, in this research, a novel method is proposed to detect gene and gene-environment interactions in a complex family-based association study with various correlated structures. We also developed an R function for the Fast Gene-Environment Sequence Kernel Association Test (FGE-SKAT), which is freely available as supplementary material for easy GWAS implementation to unveil such family-based joint effects. Simulation studies confirmed the validity of the new strategy and the superior statistical power. The FGE-SKAT was applied to the whole genome sequence data provided by Genetic Analysis Workshop 18 (GAW18) and discovered concordant and discordant regions compared to the methods without considering gene by environment interactions.


Nature ◽  
2021 ◽  
Vol 590 (7845) ◽  
pp. 290-299 ◽  
Author(s):  
Daniel Taliun ◽  
◽  
Daniel N. Harris ◽  
Michael D. Kessler ◽  
Jedidiah Carlson ◽  
...  

AbstractThe Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data. The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes)1. In the first 53,831 TOPMed samples, we detected more than 400 million single-nucleotide and insertion or deletion variants after alignment with the reference genome. Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci. Among the more than 400 million detected variants, 97% have frequencies of less than 1% and 46% are singletons that are present in only one individual (53% among unrelated individuals). These rare variants provide insights into mutational processes and recent human evolutionary history. The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 0.01%.


Sign in / Sign up

Export Citation Format

Share Document