scholarly journals Dual RNAseq analyses at soma and germline levels reveal evolutionary innovations in the elephantiasis-agent Brugia malayi, and adaptation of its Wolbachia endosymbionts

2021 ◽  
Vol 15 (1) ◽  
pp. e0008935
Author(s):  
Germain Chevignon ◽  
Vincent Foray ◽  
Mercedes Maria Pérez-Jiménez ◽  
Silvia Libro ◽  
Matthew Chung ◽  
...  

Brugia malayi is a human filarial nematode responsible for elephantiasis, a debilitating condition that is part of a broader spectrum of diseases called filariasis, including lymphatic filariasis and river blindness. Almost all filarial nematode species infecting humans live in mutualism with Wolbachia endosymbionts, present in somatic hypodermal tissues but also in the female germline which ensures their vertical transmission to the nematode progeny. These α-proteobacteria potentially provision their host with essential metabolites and protect the parasite against the vertebrate immune response. In the absence of Wolbachia wBm, B. malayi females become sterile, and the filarial nematode lifespan is greatly reduced. In order to better comprehend this symbiosis, we investigated the adaptation of wBm to the host nematode soma and germline, and we characterized these cellular environments to highlight their specificities. Dual RNAseq experiments were performed at the tissue-specific and ovarian developmental stage levels, reaching the resolution of the germline mitotic proliferation and meiotic differentiation stages. We found that most wBm genes, including putative effectors, are not differentially regulated between infected tissues. However, two wBm genes involved in stress responses are upregulated in the hypodermal chords compared to the germline, indicating that this somatic tissue represents a harsh environment to which wBm have adapted. A comparison of the B. malayi and C. elegans germline transcriptomes reveals a poor conservation of genes involved in the production of oocytes, with the filarial germline proliferative zone relying on a majority of genes absent from C. elegans. The first orthology map of the B. malayi genome presented here, together with tissue-specific expression enrichment analyses, indicate that the early steps of oogenesis are a developmental process involving genes specific to filarial nematodes, that likely result from evolutionary innovations supporting the filarial parasitic lifestyle.

2016 ◽  
Vol 3 (4) ◽  
pp. 160062 ◽  
Author(s):  
Nick Bos ◽  
Unni Pulliainen ◽  
Liselotte Sundström ◽  
Dalial Freitak

Starvation is one of the most common and severe stressors in nature. Not only does it lead to death if not alleviated, it also forces the starved individual to allocate resources only to the most essential processes. This creates energetic trade-offs which can lead to many secondary challenges for the individual. These energetic trade-offs could be exacerbated in inbred individuals, which have been suggested to have a less efficient metabolism. Here, we studied the effect of inbreeding on starvation resistance in a natural population of Formica exsecta ants, with a focus on survival and tissue-specific expression of stress, metabolism and immunity-related genes. Starvation led to large tissue-specific changes in gene expression, but inbreeding had little effect on most of the genes studied. Our results illustrate the importance of studying stress responses in different tissues instead of entire organisms.


2020 ◽  
Author(s):  
Oliver Berkowitz ◽  
Yue Xu ◽  
Yan Wang ◽  
Lim Chee Liew ◽  
Yanqiao Zhu ◽  
...  

ABSTRACTAcclimation of plants to adverse environmental conditions requires the coordination of gene expression and signalling pathways between tissues and cell types. As the energy and carbon capturing organs, leaves are significantly affected by abiotic and biotic stresses. However, tissue- or cell type-specific analyses of stress responses have largely focussed on the Arabidopsis root. Here, we comparatively explore the transcriptomes of three leaf tissues (epidermis, mesophyll, vasculature) after induction of diverse stress pathways by chemical stimuli (antimycin A, 3-amino-1,2,4-triazole, methyl viologen, salicylic acid) and UV light in Arabidopsis. Profiling stimuli-dependent changes after treatments revealed an overall reduction in the tissue-specific expression of genes, with only a limited number gaining or changing their tissue-specificity. We find no evidence of a common stress response, with only a few genes responsive to two or more treatments in the analysed tissues. However, differentially expressed genes overlap across tissues for individual treatments. Further analyses provided evidence for an interaction of auxin and ethylene that mediates retrograde signalling during mitochondrial dysfunction specifically in the epidermis, and a gene regulatory network defined the hierarchy of interactions. Taken together, we generated an extensive reference data set and results enable the tailoring of the tissue-specific engineering of stress tolerant plants.


2021 ◽  
Author(s):  
Ankita Yadav ◽  
Sanoj Kumar ◽  
Rita Verma ◽  
Shashi Pandey Rai ◽  
Charu Lata ◽  
...  

Abstract Legumes are an indispensable food after cereals with extensive production across the world. The legume production is imposed with limitations and has been augmented by various environmental stresses. The symbiotic relations between legumes and rhizobacteria have been an intriguing topic of research in view of their roles in plant growth, development and various stress responses. Recent advances on gene networks involving plethora of evolutionarily conserved miRNAs have been investigated pertaining to their roles in plant stress responses. The interaction between plant growth promoting rhizobacteria (PGPR) strain Pseudomonas putida RA, MTCC5279 and abiotic stress responsive miRNAs have previously been studied with roles in abiotic stress mitigation by modulating stress responsive miRNAs and their target genes. The present studyis an investigation involving the role of RA in abiotic stress responsive miR166h for drought mitigation in tolerant desi chickpea genotype. miRNA166 directed cleavage of its target, ATHB15 has been drifted of drought treated plantlets upon RA inoculation using 5´RLM-RACE analysis. Drought stressed chickpea plants when inoculated with growth promoting rhizobacteria, RA, the inverse correlation in expression patterns were noticed in miR166h and its validated target, ATHB15. Tissue-specific expression patterns in 15 days old chickpea seedlings including leaves, shoot and roots when exposed to salinity, drought and abscisic acid at different time points indicated the role of miR166 in different abiotic stress response. In view of the results, validation and functional characterization of such interactions involving stress responsive miRNAs along with microbial stress management techniques could be an important technique for crop improvement.


2013 ◽  
Author(s):  
AL Bookout ◽  
Y Jeong ◽  
M Downes ◽  
RT Yu ◽  
RM Evans ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document