scholarly journals Detection of toxoplasmic encephalitis in HIV positive patients in urine with hydrogel nanoparticles

2021 ◽  
Vol 15 (3) ◽  
pp. e0009199
Author(s):  
Hannah E. Steinberg ◽  
Natalie M. Bowman ◽  
Andrea Diestra ◽  
Cusi Ferradas ◽  
Paul Russo ◽  
...  

BackgroundDiagnosis of toxoplasmic encephalitis (TE) is challenging under the best clinical circumstances. The poor clinical sensitivity of quantitative polymerase chain reaction (qPCR) forToxoplasmain blood and CSF and the limited availability of molecular diagnostics and imaging technology leaves clinicians in resource-limited settings with few options other than empiric treatment.Methology/principle findingsHere we describe proof of concept for a novel urine diagnostics for TE using Poly-N-Isopropylacrylamide nanoparticles dyed with Reactive Blue-221 to concentrate antigens, substantially increasing the limit of detection. After nanoparticle-concentration, a standard western blotting technique with a monoclonal antibody was used for antigen detection. Limit of detection was 7.8pg/ml and 31.3pg/ml ofT.gondiiantigens GRA1 and SAG1, respectively. To characterize this diagnostic approach, 164 hospitalized HIV-infected patients with neurological symptoms compatible with TE were tested for 1)T.gondiiserology (121/147, positive samples/total samples tested), 2) qPCR in cerebrospinal fluid (11/41), 3) qPCR in blood (10/112), and 4) urinary GRA1 (30/164) and SAG1 (12/164). GRA1 appears to be superior to SAG1 for detection of TE antigens in urine. Fifty-one HIV-infected,T.gondiiseropositive but asymptomatic persons all tested negative by nanoparticle western blot and blood qPCR, suggesting the test has good specificity for TE for both GRA1 and SAG1. In a subgroup of 44 patients, urine samples were assayed with mass spectrometry parallel-reaction-monitoring (PRM) for the presence ofT.gondiiantigens. PRM identified antigens in 8 samples, 6 of which were concordant with the urine diagnostic.Conclusion/significancesOur results demonstrate nanoparticle technology’s potential for a noninvasive diagnostic test for TE. Moving forward, GRA1 is a promising target for antigen based diagnostics for TE.

2020 ◽  
Author(s):  
Hannah Steinberg ◽  
Natalie M Bowman ◽  
Andrea Diestra ◽  
Cusi Ferradas ◽  
Paul Russo ◽  
...  

Diagnosis of toxoplasmic encephalitis (TE) is challenging under the best clinical circumstances. The poor sensitivity of quantitative polymerase chain reaction (qPCR) for Toxoplasma in blood and CSF and the limited availability of molecular diagnostics and imaging technology leaves clinicians in resource-limited settings with few options other than empiric treatment. Here we describe proof of concept for a novel urine diagnostics for TE using Poly-N-isoproplyacrylamide nanoparticles dyed with Reactive Blue-221 to concentrate antigens, substantially increasing the limit of detection. After nanoparticle-concentration, a standard western blotting technique with a monoclonal antibody was used for antigen detection. Limit of detection was 7.8pg/ml and 31.3pg/ml of T. gondii antigens GRA1 and SAG1, respectively. To characterize this diagnostic approach, 164 hospitalized HIV-infected patients with neurological symptoms compatible with TE were tested for 1) T. gondii serology (121/147, positive samples/total samples tested), 2) qPCR in cerebrospinal fluid (11/41), 3) qPCR in blood (10/112), and 4) urinary GRA1 (30/164) and SAG1 (12/164). GRA1 appears to be superior to SAG1 for detection of TE antigens in urine. Fifty-one HIV-infected, T. gondii seropositive but asymptomatic persons all tested negative by nanoparticle western blot and blood qPCR, suggesting the test has good specificity for TE for both GRA1 and SAG1. In a subgroup of 44 patients, urine samples were assayed with mass spectrometry parallel-reaction-monitoring (PRM) for the presence of T. gondii antigens. PRM identified antigens in 8 samples, 6 of which were concordant with the urine diagnostic. Our results demonstrate nanoparticle technology potential for a noninvasive diagnostic test for TE. Moving forward, GRA1 is a promising target for antigen based diagnostics for TE.


2021 ◽  
Vol 11 (3) ◽  
pp. 373-379
Author(s):  
Huitao Li ◽  
Xueyu Chen ◽  
Xiaomei Qiu ◽  
Weimin Huang ◽  
Chuanzhong Yang

Invasive fungal infection (IFI) is the leading cause of death in neonatal patients, yet the diagnosis of IFI remains a major challenge. At present, most IFI laboratory diagnostic methods are based on classical, but limited, methods such as fungal isolation and culture and histopathological examination. Recently, quantitative polymerase chain reaction (qPCR) and droplet digital polymerase chain reaction (ddPCR) technology have been adopted to quantify nucleic-acid identification. In this study, we established qPCR and ddPCR assays for IFI diagnosis and quantification. qPCR and ddPCR were carried out using identical primers and probe for the amplification of 18S rRNA. Assay results for three fungal strains were positive, whereas ten non-fungal strains had negative results, indicating 100% specificity for both ddPCR and qPCR methods. Genomic DNA of Candida albicans was tested after a serial dilution to compare the sensitivity of the two PCR methods. The limit of detection of ddPCR was 3.2 copies/L, which was a ten-fold increase compared with that of the qPCR method (32 copies/L). Blood samples from 127 patients with high-risk factors and clinical symptoms for IFI were collected from a NICU in Shenzhen, China, and analyzed using qPCR and ddPCR. Thirty-four blood samples from neonates had a proven or probable diagnosis of IFI, and 25 of these were positive by qPCR, whereas 30 were positive by ddPCR. Among the 93 blood samples from neonates who had a possible IFI or no IFI, 24 were positive using qPCR, and 7 were positive using ddPCR. In conclusion, ddPCR is a rapid and accurate pan-fungal detection method and provides a promising prospect for IFI clinical screening.


2020 ◽  
Author(s):  
Alyssa Woronik ◽  
Henry W. Shaffer ◽  
Karin Kiontke ◽  
Jon M. Laurent ◽  
Ronald Zambrano ◽  
...  

AbstractDue to the sheer number of COVID-19 (coronavirus disease 2019) cases, the prevalence of asymptomatic cases and the fact that undocumented cases appear to be significant for transmission of the causal virus, SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), there is an urgent need for increased SARS-CoV-2 testing capability that is both efficient and effective1. In response to the growing threat of the COVID-19 pandemic in February, 2020, the FDA (US Food and Drug Administration) began issuing Emergency Use Authorizations (EUAs) to laboratories and commercial manufacturers for the development and implementation of diagnostic tests1. So far, the gold standard assay for SARS-CoV-2 detection is the RT-qPCR (real-time quantitative polymerase chain reaction) test2. However, the authorized RT-qPCR test protocols vary widely, not only in the reagents, controls, and instruments they use, but also in the SARS-CoV-2 genes they target, what results constitute a positive SARS-CoV-2 infection, and their limit of detection (LoD). The FDA has provided a web site that lists most of the tests that have been issued EUAs, along with links to the authorization letters and summary documents describing these tests1. However, it is very challenging to use this site to compare or replicate these tests for a variety of reasons. First, at least 12 of 18 tests for EUA submissions made prior to March 31, 2020, are not listed there. To our knowledge, no EUAs have been issued for these applications. Second, the data are not standardized and are only provided as longhand prose in the summary documents. Third, some details (e.g. primer sequences) are absent from several of the test descriptions. Fourth, for tests provided by commercial manufacturers, summary documents are completely missing. To address at least the first three issues, we have developed a database, EUAdb (EUAdb.org), that holds standardized information about EUA-issued tests and is focused on RT-qPCR diagnostic tests, or “high complexity molecular-based laboratory developed tests”1. By providing a standardized ontology and curated data in a relational architecture, we seek to facilitate comparability and reproducibility, with the ultimate goal of consistent, universal and high-quality testing nationwide. Here, we document the basics of the EUAdb data architecture and simple data queries. The source files can be provided to anyone who wants to modify the database for his/her own research purposes. We ask that the original source of the files be made clear and that the database not be used in its original or modified forms for commercial purposes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Unoh Ki ◽  
Takeru Suzuki ◽  
Satoshi Nakazawa ◽  
Yuuki Yonekawa ◽  
Kazuki Watanabe ◽  
...  

AbstractRecently, in food safety and various other fields, qualitative and quantitative gene analysis using real-time polymerase chain reaction (PCR) method has become increasingly popular. The limit of detection (LOD) and quantifiable range for these measurements depends on the range and precision of DNA calibrators’ concentrations. Low-copy-number nucleic acid reference materials with low uncertainty produced by an inkjet system have been developed to allow for precise measurements in a low-copy-number region. However, when using a calibrator with a low copy number near one, the copy number distribution is asymmetric. Consequently, the confidence intervals of estimated copy numbers can include negative values when conventional methods of uncertainty estimation are used. A negative confidence interval is irrelevant in the context of copy number, which is always positive value or zero. Here, we propose a method to evaluate the uncertainty of real-time PCR measurements with representative values and an asymmetric 95% confidence interval. Moreover, we use the proposed method for the actual calculation of uncertainty of real-time PCR measurement results for low-copy-number DNA samples and demonstrate that the proposed method can evaluate the precision of real-time PCR measurements more appropriately in a low-copy-number region.


2022 ◽  
Author(s):  
Yao Zhang ◽  
Jiazhao Xie ◽  
Yan-li Jiang ◽  
Shao-juan Yang ◽  
Hui Wei ◽  
...  

Abstract Background Elevated serum homocysteine (Hcy) is an independent risk factor of Alzheimer’s disease (AD). It has been reported that Hcy dramatically accelerates the aging of endothelial progenitor cells or endothelial cells. However, whether and how Hcy produces neuronal senescence is largely unknown. Methods Mouse neuroblastma 2a (N2a) cells were treated with Hcy, and senescence-associated β-galactosidase (SA-β-gal) staining was applied to assay senescence. Senescent markers and related proteins were examined by western blot, quantitative Polymerase Chain Reaction (qPCR), immunofluorescence staining. Methylation of promoter was assay by bisulfite sequencing PCR (BSP). Immunoprecipitation (IP) was applied to examine association between proteins. Rats were injected with homocysteine and examined neuronal senescence. Results In this study, we observed that Hcy significantly promoted the senescence of N2a cells with elevated β-catenin and Kelch like ECH-associated protein 1 (Keap1). Intriguingly, Hcy increased the interaction between Keap1 and Wilms tumor gene on X chromosome (WTX), but decreased β-catenin-WTX interaction simultaneously. Mechanistically, Hcy attenuated the methylation level of Keap1 promoter’s CqG island and activated the transcription of Keap1. While, slow degradation rate rather than transcriptional activation contributed to the high level of β-catenin. Hcy-increased Keap1 competed with β-catenin to bind to WTX. Knockdown of β-catenin and Keap1 both attenuated Hcy-induced senescence of N2a cells. Hcy-induced rats model also showed neuronal senescence in cortex along with elevated senescent markers. Conclusions Our data highlight a crucial role of Keap1-β-catenin pathway in Hcy-induced neuronal-like senescence and provide a promising target for AD treatment.


Author(s):  
Carlos dos Santos ◽  
Kézia de Oliveira ◽  
Geovana Mendes ◽  
Lívia Silva ◽  
Marcio de Souza Jr. ◽  
...  

The coronavirus pandemic has been causing damage to many nations, as public and private health systems deteriorate by the increasing demand. Some infected patients have culturable severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) even though not presenting any symptoms, and therefore, are probably able to transmit it. Correctly diagnosing and isolating infected patients is an important step towards preventing new infections. Current diagnostic methods rely mainly on reverse transcription quantitative polymerase chain reaction (RT-qPCR). Methods such as reverse transcription loop-mediated isothermal amplification (RT-LAMP) have risen as viable alternatives, as they are cheaper and require less infrastructure, they have the potential to be applied in low-resource scenarios and even at point-of-care. Here we report a colorimetric RT‑LAMP assay capable of detecting SARS-CoV-2 in ribonucleic acid (RNA) from saliva. In some cases, the test was able to detect viral RNA before symptom onset and even in a self-reported asymptomatic carrier. It had a limit of detection of 300 copies per reaction and showed a sensitivity of 80%, a specificity of 100%, a general accuracy of 99.59%, and a Cohen’s kappa of 0.887. The possibility of detecting positive cases even before the clinical manifestation shows great potential and can contribute to controlling the pandemic.


2019 ◽  
Vol 70 (9) ◽  
pp. 1875-1881 ◽  
Author(s):  
Elise M O’Connell ◽  
Sarah Harrison ◽  
Eric Dahlstrom ◽  
Theodore Nash ◽  
Thomas B Nutman

Abstract Background Treatment of subarachnoid neurocysticercosis (NCC) is complicated, and assays that can guide treatment are not widely available. The reproducibility and scalability of molecular-based biomarkers would be of great use. Methods The Taenia solium genome was mined and primers and probes were designed to target repeats with the highest coverage; the most sensitive, specific, and efficient repeat (TsolR13) was selected for clinical testing. We tested 46 plasma samples and 36 cerebral spinal fluid (CSF) samples taken from patients with subarachnoid or ventricular disease using quantitative polymerase chain reaction (qPCR). Results The analytic sensitivity of TsolR13 was 97.3% at 240 attograms (ag) of T. solium genomic DNA and 100% analytic specificity. The clinical sensitivity in detecting active subarachnoid or ventricular disease in symptomatic patients was 100% in CSF and 81.3% in plasma. The predictive ability to distinguish active from cured disease was better for CSF (94.4% of those cured had negative qPCR results) than for plasma (86.7% of those cured tested negative). Some subjects also had plasma DNA detectable intermittently for years after being cured. Overall, the test performance was equivalent to T. solium antigen detection. Conclusions A qPCR test for the detection of the highly repetitive Tsol13 sequence has been developed and shown to be highly sensitive and specific for NCC, but also useful as a test of cure in CSF and for the definitive diagnosis of NCC in plasma.


2017 ◽  
Vol 23 (1) ◽  
Author(s):  
N.NANDHA KUMAR ◽  
K. SOURIANATHA SUNDARAM ◽  
D. SUDHAKAR ◽  
K.K. KUMAR

Excessive presence of polysaccharides, polyphenol and secondary metabolites in banana plant affects the quality of DNA and it leads to difficult in isolating good quality of DNA. An optimized modified CTAB protocol for the isolation of high quality and quantity of DNA obtained from banana leaf tissues has been developed. In this protocol a slight increased salt (NaCl) concentration (2.0M) was used in the extraction buffer. Polyvinylpyrrolidone (PVP) and Octanol were used for the removal of polyphenols and polymerase chain reaction (PCR) inhibitors. Proteins like various enzymes were degraded by Proteinase K and removed by centrifugation from plant extract during the isolation process resulting in pure genomic DNA, ready to use in downstream applications including PCR, quantitative polymerase chain reaction (qPCR), ligation, restriction and sequencing. This protocol yielded a high molecular weight DNA isolated from polyphenols rich leaves of Musa spp which was free from contamination and colour. The average yields of total DNA from leaf ranged from 917.4 to 1860.9 ng/ìL. This modified CTAB protocol reported here is less time consuming 4-5h, reproducible and can be used for a broad spectrum of plant species which have polyphenol and polysaccharide compounds.


Blood ◽  
2005 ◽  
Vol 105 (4) ◽  
pp. 1759-1767 ◽  
Author(s):  
Kyu-Tae Kim ◽  
Kristin Baird ◽  
Joon-Young Ahn ◽  
Paul Meltzer ◽  
Michael Lilly ◽  
...  

AbstractConstitutively activating internal tandem duplication (ITD) mutations of the receptor tyrosine kinase FLT3 (Fms-like tyrosine kinase 3) play an important role in leukemogenesis, and their presence is associated with poor prognosis in acute myeloid leukemia (AML). To better understand FLT3 signaling in leukemogenesis, we have examined the changes in gene expression induced by FLT3/ITD or constitutively activated wild-type FLT3 expression. Microarrays were used with RNA harvested before and after inhibition of FLT3 signaling. Pim-1 was found to be one of the most significantly down-regulated genes upon FLT3 inhibition. Pim-1 is a proto-oncogene and is known to be up-regulated by signal transducer and activator of transcription 5 (STAT5), which itself is a downstream target of FLT3 signaling. Quantitative polymerase chain reaction (QPCR) confirmed the microarray results and demonstrated approximately 10-fold decreases in Pim-1 expression in response to FLT3 inhibition. Pim-1 protein also decreased rapidly in parallel with decreasing autophosphorylation activity of FLT3. Enforced expression of either the 44-kDa or 33-kDa Pim-1 isotypes resulted in increased resistance to FLT3 inhibition-mediated cytotoxicity and apoptosis. In contrast, expression of a dominant-negative Pim-1 construct accelerated cytotoxicity in response to FLT3 inhibition and inhibited colony growth of FLT3/ITD-transformed BaF3 cells. These findings demonstrate that constitutively activated FLT3 signaling up-regulates Pim-1 expression in leukemia cells. This up-regulation contributes to the proliferative and antiapoptotic pathways induced by FLT3 signaling. (Blood. 2005;105: 1759-1767)


Sign in / Sign up

Export Citation Format

Share Document