scholarly journals Biogenic nanoporous silicon carrier improves the efficacy of buparvaquone against resistant visceral leishmaniasis

2021 ◽  
Vol 15 (6) ◽  
pp. e0009533
Author(s):  
Rinez Thapa ◽  
Subhasish Mondal ◽  
Joakim Riikonen ◽  
Jimi Rantanen ◽  
Simo Näkki ◽  
...  

Visceral leishmaniasis is a vector-borne protozoan infection that is fatal if untreated. There is no vaccination against the disease, and the current chemotherapeutic agents are ineffective due to increased resistance and severe side effects. Buparvaquone is a potential drug against the leishmaniases, but it is highly hydrophobic resulting in poor bioavailability and low therapeutic efficacy. Herein, we loaded the drug into silicon nanoparticles produced from barley husk, which is an agricultural residue and widely available. The buparvaquone-loaded nanoparticles were several times more selective to kill the intracellular parasites being non-toxic to macrophages compared to the pure buparvaquone and other conventionally used anti-leishmanial agents. Furthermore, the in vivo results revealed that the intraperitoneally injected buparvaquone-loaded nanoparticles suppressed the parasite burden close to 100%. By contrast, pure buparvaquone suppressed the burden only by 50% with corresponding doses. As the conclusion, the biogenic silicon nanoparticles are promising carriers to significantly improve the therapeutic efficacy and selectivity of buparvaquone against resistant visceral leishmaniasis opening a new avenue for low-cost treatment against this neglected tropical disease threatening especially the poor people in developing nations.

Homeopathy ◽  
2020 ◽  
Vol 109 (04) ◽  
pp. 213-223
Author(s):  
Jyoti Joshi ◽  
Chetna Bandral ◽  
Raj Kumar Manchanda ◽  
Anil Khurana ◽  
Debadatta Nayak ◽  
...  

Abstract Background Leishmaniasis is one of several neglected tropical diseases that warrant serious attention. A disease of socio-economically poor people, it demands safer and cheaper drugs that help to overcome the limitations faced by the existing anti-leishmanials. Complementary or traditional medicines might be a good option, with an added advantage that resistance may not develop against these drugs. Thus, the present investigation was performed to evaluate the anti-leishmanial efficacy of an ultra-diluted homeopathic medicine (Iodium 30c) in experimental visceral leishmaniasis (VL). Methods Compliant with strict ethical standards in animal experimentation, the study was performed in-vivo in inbred BALB/c mice which were injected intravenously with 1 × 107 promastigotes of Leishmania donovani before (therapeutic) or after (prophylactic) treatment with Iodium 30c for 30 days. In other groups of mice (n = 6 per group), amphotericin B served as positive control, infected animals as the disease control, while the naïve controls included normal animals; animals receiving only Iodium 30c or Alcohol 30c served as sham controls. The anti-leishmanial efficacy was assessed by determining the hepatic parasite load and analysing percentages of CD4+ and CD8+ T cells. Biochemical analysis and histological studies were performed to check any toxicities. Results Iodium-treated animals showed a significantly reduced parasite load (to 1503 ± 39 Leishman Donovan Units, LDU) as compared with the infected controls (4489 ± 256 LDU) (p < 0.05): thus, the mean therapeutic efficacy of Iodium 30c was 66.5%. In addition, the population of CD4+ and CD8+ T cells was significantly increased (p < 0.05) after treatment. No toxicity was observed, as evidenced from biochemical and histopathological studies of the liver and kidneys. Efficacy of Iodium 30c prophylaxis was 58.3%, while the therapeutic efficacy of amphotericin B was 85.9%. Conclusion This original study has shown that Iodium 30c had significant impact in controlling parasite replication in experimental VL, though the effect was less than that using standard pharmaceutical treatment.


2016 ◽  
Vol 60 (5) ◽  
pp. 2932-2940 ◽  
Author(s):  
Douglas R. Rice ◽  
Paola Vacchina ◽  
Brianna Norris-Mullins ◽  
Miguel A. Morales ◽  
Bradley D. Smith

ABSTRACTCutaneous leishmaniasis is a neglected tropical disease that causes painful lesions and severe disfigurement. Modern treatment relies on a few chemotherapeutics with serious limitations, and there is a need for more effective alternatives. This study describes the selective targeting of zinc(II)-dipicolylamine (ZnDPA) coordination complexes towardLeishmania major, one of the species responsible for cutaneous leishmaniasis. Fluorescence microscopy ofL. majorpromastigotes treated with a fluorescently labeled ZnDPA probe indicated rapid accumulation of the probe within the axenic promastigote cytosol. The antileishmanial activities of eight ZnDPA complexes were measured using anin vitroassay. All tested complexes exhibited selective toxicity againstL. majoraxenic promastigotes, with 50% effective concentration values in the range of 12.7 to 0.3 μM. Similar toxicity was observed against intracellular amastigotes, but there was almost no effect on the viability of mammalian cells, including mouse peritoneal macrophages.In vivotreatment efficacy studies used fluorescence imaging to noninvasively monitor changes in the red fluorescence produced by an infection of mCherry-L. majorin a mouse model. A ZnDPA treatment regimen reduced the parasite burden nearly as well as the reference care agent, potassium antimony(III) tartrate, and with less necrosis in the local host tissue. The results demonstrate that ZnDPA coordination complexes are a promising new class of antileishmanial agents with potential for clinical translation.


Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 462 ◽  
Author(s):  
Kevin Chih-Yang Huang ◽  
Shu-Fen Chiang ◽  
William Tzu-Liang Chen ◽  
Tsung-Wei Chen ◽  
Ching-Han Hu ◽  
...  

Programmed cell death-1 (PD-1) has demonstrated impressive clinical outcomes in several malignancies, but its therapeutic efficacy in the majority of colorectal cancers is still low. Therefore, methods to improve its therapeutic efficacy in colorectal cancer (CRC) patients need further investigation. Here, we demonstrate that immunogenic chemotherapeutic agents trigger the induction of tumor PD-L1 expression in vitro and in vivo, a fact which was validated in metastatic CRC patients who received preoperatively neoadjuvant chemotherapy (neoCT) treatment, suggesting that tumor PD-L1 upregulation by chemotherapeutic regimen is more feasible via PD-1/PD-L1 immunotherapy. However, we found that the epigenetic control of tumor PD-L1 via DNA methyltransferase 1 (DNMT1) significantly influenced the response to chemotherapy. We demonstrate that decitabine (DAC) induces DNA hypomethylation, which not only directly enhances tumor PD-L1 expression but also increases the expression of immune-related genes and intratumoral T cell infiltration in vitro and in vivo. DAC was found to profoundly enhance the therapeutic efficacy of PD-L1 immunotherapy to inhibit tumor growth and prolong survival in vivo. Therefore, it can be seen that DAC remodels the tumor microenvironment to improve the effect of PD-L1 immunotherapy by directly triggering tumor PD-L1 expression and eliciting stronger anti-cancer immune responses, providing potential clinical benefits to CRC patients in the future.


2017 ◽  
Vol 62 (1) ◽  
Author(s):  
April C. Joice ◽  
Sihyung Yang ◽  
Abdelbasset A. Farahat ◽  
Heidi Meeds ◽  
Mei Feng ◽  
...  

ABSTRACT Given the limitations of current antileishmanial drugs and the utility of oral combination therapy for other infections, developing an oral combination against visceral leishmaniasis should be a high priority. In vitro combination studies with DB766 and antifungal azoles against intracellular Leishmania donovani showed that posaconazole and ketoconazole, but not fluconazole, enhanced DB766 potency. Pharmacokinetic analysis of DB766-azole combinations in uninfected Swiss Webster mice revealed that DB766 exposure was increased by higher posaconazole and ketoconazole doses, while DB766 decreased ketoconazole exposure. In L. donovani-infected BALB/c mice, DB766-posaconazole combinations given orally for 5 days were more effective than DB766 or posaconazole alone. For example, 81% ± 1% (means ± standard errors) inhibition of liver parasite burden was observed for 37.5 mg/kg of body weight DB766 plus 15 mg/kg posaconazole, while 37.5 mg/kg DB766 and 15 mg/kg posaconazole administered as monotherapy gave 40% ± 5% and 21% ± 3% inhibition, respectively. Combination index (CI) analysis indicated that synergy or moderate synergy was observed in six of nine combined dose groups, while the other three were nearly additive. Liver concentrations of DB766 and posaconazole increased in almost all combination groups compared to monotherapy groups, although many increases were not statistically significant. For DB766-ketoconazole combinations evaluated in this model, two were antagonistic, one displayed synergy, and one was nearly additive. These data indicate that the efficacy of DB766-posaconazole and DB766-ketoconazole combinations in vivo is influenced in part by the pharmacokinetics of the combination, and that the former combination deserves further consideration in developing new treatment strategies against visceral leishmaniasis.


2021 ◽  
Vol 65 (5) ◽  
Author(s):  
Valter V. Andrade-Neto ◽  
Karina M. Rebello ◽  
Thais M. Pereira ◽  
Eduardo Caio Torres-Santos

ABSTRACT Drug combination therapy is an interesting approach to increase the success of drug repurposing for neglected diseases. Thus, the objective of this work was to evaluate binary and ternary therapies composed of itraconazole, ezetimibe, and miltefosine for the treatment of visceral leishmaniasis. Intracellular Leishmania infantum amastigotes were incubated with the drugs alone or in combination for 72 h. For in vivo experiments, we tested long-course (21 days, once per day) and short-course (5 days, twice per day) treatments for the binary combination of itraconazole and ezetimibe. For the ternary therapy including miltefosine, we adopted the short-course treatment and varied the vehicle. None of the combinations were toxic to macrophages. The binary combination of itraconazole plus ezetimibe and the ternary combination of itraconazole, ezetimibe, and miltefosine had synergistic effects in intracellular amastigotes, for some of the proportions evaluated. Although the in vivo long-course therapy had been more effective than the short-course protocol, it showed hepatic toxicity signs. Ezetimibe has been proven to be able to reduce the parasite burden alone or in combination. Both suspensions of the ternary combination were active, but when the drugs were suspended in the commercial Ora-Plus formulation instead of purified water, the parasite burden was reduced by 98% in the liver and spleen. Altogether, the results demonstrate for the first time the activity of ezetimibe in a viscerotropic species of Leishmania and indicate that ternary treatment composed of miltefosine, itraconazole, and ezetimibe at low doses is a promising therapeutic alternative for the treatment of visceral leishmaniasis.


2000 ◽  
Vol 44 (6) ◽  
pp. 1739-1742 ◽  
Author(s):  
Tuhina Dey ◽  
Khairul Anam ◽  
Farhat Afrin ◽  
Nahid Ali

ABSTRACT Here we report the activity of liposomes comprising egg phosphatidylcholine (PC) and stearylamine (SA) against Leishmania donovani parasites. Both promastigotes and intracellular amastigotes in vitro and in vivo were susceptible to SA-PC liposomes. A single dose of 55 mg of SA-PC liposomes/animal could significantly reduce the hepatic parasite burden by 85 and 68% against recent and established experimental visceral leishmaniasis, respectively, suggesting their strong therapeutic potential.


Author(s):  
Pallab Ghosh ◽  
Subhasish Mondal ◽  
Tanmoy Bera

<p><strong>Objective: </strong>To overcome low physiological solubility, poor bioavailability, the short plasma half-life of andrographolide (AG), a delivery system based on poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) were developed to increase the efficiency of AG against visceral leishmaniasis (VL).<strong> </strong></p><p><strong>Methods: </strong>Andrographolide-PLGA nanoparticles (AGnp) were prepared with Pgp efflux inhibitor vitamin E TPGS (D-α-tocopheryl polyethylene glycol 1000 succinate) by emulsion solvent evaporation method and characterized. Antileishmanial activity was evaluated using<em> in vitro</em> and<em> in vivo</em> VL infection model. <strong></strong></p><p><strong>Results: </strong>The particle size of AGnp was found to be171.4±11.5 nm with an encapsulation efficiency of 81%. The AGnp reduced AG cellular toxicity, retained it's<em> in vitro</em> antileishmanial activity and lead to a reduction (99.9%) of parasite burden in the <em>Leishmania donovani</em> infected spleen and liver. AGnp was more active in infected mice liver at low dose than in spleen. Therapeutic indexes (TI) were 6.9-fold greater in AG and 68-fold in AGnp compared to amphotericin B (AmB) when evaluated in <em>L. donovani</em> infected spleen.<strong> </strong></p><p><strong>Conclusion: </strong>Incorporation of AG in PLGA nanoparticles, provided controlled and improved <em>in vivo</em> performance against VL</p>


2013 ◽  
Vol 57 (10) ◽  
pp. 4699-4706 ◽  
Author(s):  
Stephen Patterson ◽  
Susan Wyllie ◽  
Laste Stojanovski ◽  
Meghan R. Perry ◽  
Frederick R. C. Simeons ◽  
...  

ABSTRACTThe novel nitroimidazopyran agent (S)-PA-824 has potent antibacterial activity againstMycobacterium tuberculosisin vitroandin vivoand is currently in phase II clinical trials for tuberculosis (TB). In contrast toM. tuberculosis, where (R)-PA-824 is inactive, we report here that both enantiomers of PA-824 show potent parasiticidal activity againstLeishmania donovani, the causative agent of visceral leishmaniasis (VL). In leishmania-infected macrophages, (R)-PA-824 is 6-fold more active than (S)-PA-824. Both des-nitro analogues are inactive, underlining the importance of the nitro group in the mechanism of action. Although thein vitroandin vivopharmacological profiles of the two enantiomers are similar, (R)-PA-824 is more efficacious in the murine model of VL, with >99% suppression of parasite burden when administered orally at 100 mg kg of body weight−1, twice daily for 5 days. InM. tuberculosis, (S)-PA-824 is a prodrug that is activated by a deazaflavin-dependent nitroreductase (Ddn), an enzyme which is absent inLeishmaniaspp. Unlike the case with nifurtimox and fexinidazole, transgenic parasites overexpressing the leishmania nitroreductase are not hypersensitive to either (R)-PA-824 or (S)-PA-824, indicating that this enzyme is not the primary target of these compounds. Drug combination studiesin vitroindicate that fexinidazole and (R)-PA-824 are additive whereas (S)-PA-824 and (R)-PA-824 show mild antagonistic behavior. Thus, (R)-PA-824 is a promising candidate for late lead optimization for VL and may have potential for future use in combination therapy with fexinidazole, currently in phase II clinical trials against VL.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1061
Author(s):  
Débora Faria Silva ◽  
Levi Eduardo Soares Reis ◽  
Marina Guimarães Carvalho Machado ◽  
Douglas Daniel Dophine ◽  
Vinicius Roberto de Andrade ◽  
...  

Standards of care for human visceral leishmaniasis (VL) are based on drugs used parenterally, and oral treatment options are urgently needed. In the present study, a repurposing strategy was used associating tamoxifen (TMX) with polyethylene glycol-block-polylactide nanocapsules (NC) and its anti-leishmanial efficacy was reported in vivo. Stable surface modified-NC (5 mg/mL of TMX) exhibited 200 nm in size, +42 mV of zeta potential, and 98% encapsulation efficiency. Atomic force microscopy evidenced core-shell-NC. Treatment with TMX-NC reduced parasite-DNA quantified in liver and spleen compared to free-TMX; and provided a similar reduction of parasite burden compared with meglumine antimoniate in mice and hamster models. Image-guided biodistribution showed accumulation of NC in liver and spleen after 30 min post-administration. TMX-NC reduced the number of liver granulomas and restored the aspect of capsules and trabeculae in the spleen of infected animals. TMX-NC was tested for the first time against VL models, indicating a promising formulation for oral treatment.


2000 ◽  
Vol 68 (10) ◽  
pp. 5595-5602 ◽  
Author(s):  
Peter C. Melby ◽  
Gary B. Ogden ◽  
Hector A. Flores ◽  
Weiguo Zhao ◽  
Christopher Geldmacher ◽  
...  

ABSTRACT Visceral leishmaniasis caused by the intracellular parasiteLeishmania donovani is a significant public health problem in many regions of the world. Because of its large genome and complex biology, developing a vaccine for this pathogen has proved to be a challenging task and, to date, protective recombinant vaccine candidates have not been identified. To tackle this difficult problem, we adopted a reductionist approach with the intention of identifying cDNA sequences in an L. donovani amastigote cDNA library that collectively or singly conferred protection against parasite challenge in a murine model of visceral leishmaniasis. We immunized BALB/c mice with plasmid DNA isolated and pooled from 15 cDNA sublibraries (∼2,000 cDNAs/sublibrary). Following systemic challenge with L. donovani, mice immunized with 6 of these 15 sublibraries showed a significantly reduced (35- to 1,000-fold) hepatic parasite burden. Because of the complexity and magnitude of the sequential fractionation-immunization-challenge approach, we restricted our attention to the two sublibraries that conferred the greatest in vivo protection. From one of these two sublibraries, we identified several groups of cDNAs that afforded protection, including a set of nine novel cDNAs and, surprisingly, a group of five cDNAs that encoded L. donovani histone proteins. At each fractionation step, the cDNA sublibraries or the smaller DNA fractions that afforded in vivo protection against the parasite also induced in vitro parasite-specific T helper 1 immune responses. Our studies demonstrate that immunization with sequential fractions of a cDNA library is a powerful strategy for identifying anti-infective vaccine candidates.


Sign in / Sign up

Export Citation Format

Share Document