scholarly journals Contradiction between Plastid Gene Transcription and Function Due to Complex Posttranscriptional Splicing: An Exemplary Study of ycf15 Function and Evolution in Angiosperms

PLoS ONE ◽  
2013 ◽  
Vol 8 (3) ◽  
pp. e59620 ◽  
Author(s):  
Chao Shi ◽  
Yuan Liu ◽  
Hui Huang ◽  
En-Hua Xia ◽  
Hai-Bin Zhang ◽  
...  
2020 ◽  
Author(s):  
Colin Peter Singer Kruse ◽  
Alexander D Meyers ◽  
Proma Basu ◽  
Sarahann Hutchinson ◽  
Darron R Luesse ◽  
...  

Abstract Background: Understanding of gravity sensing and response is critical to long-term human habitation in space and can provide new advantages for terrestrial agriculture. To this end, the altered gene expression profile induced by microgravity has been repeatedly queried by microarray and RNA-seq experiments to understand gravitropism. However, the quantification of altered protein abundance in space has been minimally investigated. Results: Proteomic (iTRAQ-labelled LC-MS/MS) and transcriptomic (RNA-seq) analyses simultaneously quantified protein and transcript differential expression of three-day old, etiolated Arabidopsis thaliana seedlings grown aboard the International Space Station along with their ground control counterparts. Protein extracts were fractionated to isolate soluble and membrane proteins and analyzed to detect differentially phosphorylated peptides. In total, 968 RNAs, 107 soluble proteins, and 103 membrane proteins were identified as differentially expressed. In addition, the proteomic analyses identified 16 differential phosphorylation events. Proteomic data delivered novel insights and simultaneously provided new context to previously made observations of gene expression in microgravity. There is a sweeping shift in post-transcriptional mechanisms of gene regulation including RNA-decapping protein DCP5, the splicing factors GRP7 and GRP8, and AGO4,. These data also indicate AHA2 and FERONIA as well as CESA1 and SHOU4 as central to the cell wall adaptations seen in spaceflight. Patterns of tubulin-a 1, 3,4 and 6 phosphorylation further reveal an interaction of microtubule and redox homeostasis that mirrors osmotic response signaling elements. The absence of gravity also results in a seemingly wasteful dysregulation of plastid gene transcription. Conclusions: The datasets gathered from Arabidopsis seedlings exposed to microgravity revealed marked impacts on post-transcriptional regulation, cell wall synthesis, redox/microtubule dynamics, and plastid gene transcription. The impact of post-transcriptional regulatory alterations represents an unstudied element of the plant microgravity response with the potential to significantly impact plant growth efficiency and beyond. What’s more, addressing the effects of microgravity on AHA2, CESA1, and alpha tubulins has the potential to enhance cytoskeletal organization and cell wall composition, thereby enhancing biomass production and growth in microgravity. Finally, understanding and manipulating the dysregulation of plastid gene transcription has further potential to address the goal of enhancing plant growth in the stressful conditions of microgravity.


2019 ◽  
Vol 8 (6) ◽  
pp. 757 ◽  
Author(s):  
Josep Baulida ◽  
Víctor M. Díaz ◽  
Antonio García de Herreros

Snail1 transcriptional factor plays a key role in the control of epithelial to mesenchymal transition and fibroblast activation. As a consequence, Snail1 expression and function is regulated at multiple levels from gene transcription to protein modifications, affecting its interaction with specific cofactors. In this review, we describe the different elements that control Snail1 expression and its activity both as transcriptional repressor or activator.


2007 ◽  
Vol 52 (6) ◽  
pp. 766-770 ◽  
Author(s):  
XiaoJuan Zhu ◽  
BaiQu Huang ◽  
XingZhi Wang ◽  
Shui Hao ◽  
XianLu Zeng

Metallomics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1735-1747
Author(s):  
Louisa Loviscach ◽  
Tobias M. Backes ◽  
Daniel S. Langfermann ◽  
Myriam Ulrich ◽  
Gerald Thiel

Zinc, a trace element, is necessary for the correct structure and function of many proteins.


2008 ◽  
Vol 42 (2) ◽  
pp. 149-160 ◽  
Author(s):  
Marie France Bouchard ◽  
Hiroaki Taniguchi ◽  
Robert S Viger

GATA transcription factors are crucial regulators of cell-specific gene expression in many tissues including the gonads. Although clinical cases of reproductive dysfunction have yet to be formally linked to GATA gene mutations, they have begun to be reported in other systems. Heterozygous GATA4 mutations have been associated with cases of congenital heart defects. Little is known, however, about the effect of these mutations on gonadal gene transcription. Since individuals carrying these mutations do not appear to suffer from gross reproductive defects, we hypothesized that this might be due to the differential transcriptional properties of the mutant proteins on heart versus gonadal target genes. Five mutations (S52F, E215D, G295S, V266M, and E359X) were recreated in the rat GATA4 protein. Several parameters were used to analyze the transcriptional properties of the mutants: activation of known gonadal target promoters (Star, Cyp19a1, and Inha), DNA binding, and interaction with GATA4 transcriptional partners. Three mutations (S52F, G295S, and E359X) reduced GATA4 transcriptional activity on the different gonadal promoters. With the exception of the G295S mutant, which showed a significant loss of DNA-binding affinity, the decrease in activity of the other GATA4 mutants was not associated with a change in DNA binding. All GATA4 mutants retained their ability to interact and cooperate with their major gonadal partners (NR5A1 and NR5A2) thereby compensating in part for the loss in intrinsic GATA4 transcriptional activity. Thus, unlike the heart, where the GATA4 mutations have deleterious effects, our data suggest that they would have a lesser impact on gonadal gene transcription and function.


2008 ◽  
Vol 10 (8) ◽  
pp. 902-911 ◽  
Author(s):  
Vihren Kolev ◽  
Anna Mandinova ◽  
Juan Guinea-Viniegra ◽  
Bing Hu ◽  
Karine Lefort ◽  
...  

Immunity ◽  
2009 ◽  
Vol 30 (6) ◽  
pp. 912-925 ◽  
Author(s):  
Yasuto Araki ◽  
Zhibin Wang ◽  
Chongzhi Zang ◽  
William H. Wood ◽  
Dustin Schones ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document