scholarly journals Ocean Acidification Has Multiple Modes of Action on Bivalve Larvae

PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0128376 ◽  
Author(s):  
George G. Waldbusser ◽  
Burke Hales ◽  
Chris J. Langdon ◽  
Brian A. Haley ◽  
Paul Schrader ◽  
...  
2019 ◽  
Author(s):  
Emma Timmins-Schiffman ◽  
José M. Guzmán ◽  
Rhonda Elliott ◽  
Brent Vadopalas ◽  
Steven B. Roberts

AbstractPacific geoduck clams (Panopea generosa) are found along the Northeast Pacific coast where they are significant components of coastal and estuarine ecosystems and the basis of a growing and highly profitable aquaculture industry. The Pacific coastline, however, is also the sight of rapidly changing ocean habitat, including significant reductions in pH. The impacts of ocean acidification on invertebrate bivalve larvae have been widely documented and it is well established that many species experience growth and developmental deficiencies when exposed to low pH. As a native of environments that have historically lower pH than the open ocean, it is possible that geoduck larvae are less impacted by these effects than other species. Over two weeks in larval development (days 6-19 post-fertilization) geoduck larvae were reared at pH 7.5 or 7.1 in a commercial shellfish hatchery. Larvae were sampled at six time points throughout the period for a in-depth proteomics analysis of developmental molecular physiology. Larvae reared at low pH were smaller than those reared at ambient pH, especially in the prodissoconch II phase of development. Competency for settlement was also delayed in larvae from the low pH conditions. A comparison of proteomic profiles over the course of development reveal that these differing phenotypic outcomes are likely due to environmental disruptions to the timing of molecular physiological events as suites of proteins showed differing profiles of abundance between the two pH environments. Ocean acidification likely caused an energetic stress on the larvae at pH 7.1, causing a shift in physiological prioritization with resulting loss of fitness.


Author(s):  
Ulf Ziemann

This article discusses various aspects of the pharmacology of transcranial magnetic stimulator (TMS) measures. TMS measures reflect axonal, or excitatory or inhibitory synaptic excitability in distinct interneuron circuits. TMS measures can be employed to study the effects of a drug with unknown or multiple modes of action, and hence to determine its main mode of action at the systems level of the motor cortex. TMS experiments can also study acute drug effects that may be different from chronic drug effects. TMS or repetitive TMS may induce changes in endogenous neurotransmitter or neuromodulator systems. This allows for the study of neurotransmission along defined neuronal projections in health and disease. This article describes pharmacological experiments that have characterized the physiology of TMS measures of motor cortical excitability. Pharmacological challenging of TMS measures has opened a broad window into human cortical physiology.


2015 ◽  
Vol 113 (8) ◽  
pp. 1158-1167 ◽  
Author(s):  
Yu-chi Shen ◽  
Ravi Upadhyayula ◽  
Stephanie Cevallos ◽  
Ryan J Messick ◽  
Tammy Hsia ◽  
...  

Ocean warming and acidification are major climate change stressors for marine invertebrate larvae, and their impacts differ between habitats and regions. In many regions species with pelagic propagules are on the move, exhibiting poleward trends as temperatures rise and ocean currents change. Larval sensitivity to warming varies among species, influencing their invasive potential. Broadly distributed species with wide developmental thermotolerances appear best able to avail of the new opportunities provided by warming. Ocean acidification is a multi-stressor in itself and the impacts of its covarying stressors differ among taxa. Increased pCO2 is the key stressor impairing calcification in echinoid larvae while decreased mineral saturation is more important for calcification in bivalve larvae. Non-feeding, non-calcifying larvae appear more resilient to warming and acidification. Some species may be able to persist through acclimatization/adaptation to produce resilient offspring. Understanding the capacity for adaptation/acclimatization across generations is important to predicting the future species composition of marine communities.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Gero Steinberg ◽  
Martin Schuster ◽  
Sarah J. Gurr ◽  
Tina A. Schrader ◽  
Michael Schrader ◽  
...  

Cancers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 475 ◽  
Author(s):  
Yoichi Imai ◽  
Mitsuhito Hirano ◽  
Masayuki Kobayashi ◽  
Muneyoshi Futami ◽  
Arinobu Tojo

HDACs are critical regulators of gene expression that function through histone modification. Non-histone proteins and histones are targeted by these proteins and the inhibition of HDACs results in various biological effects. Moreover, the aberrant expression and function of these proteins is thought to be related to the pathogenesis of multiple myeloma (MM) and several inhibitors have been introduced or clinically tested. Panobinostat, a pan-HDAC inhibitor, in combination with a proteasome inhibitor and dexamethasone has improved survival in relapsing/refractory MM patients. We revealed that panobinostat inhibits MM cell growth by degrading the protein PPP3CA, a catalytic subunit of calcineurin. This degradation was suggested to be mediated by suppression of the chaperone function of HSP90 due to HDAC6 inhibition. Cytotoxicity due to the epigenetic regulation of tumor-associated genes by HDAC inhibitors has also been reported. In addition, HDAC6 inhibition enhances tumor immunity and has been suggested to strengthen the cytotoxic effects of therapeutic antibodies against myeloma. Furthermore, therapeutic strategies to enhance the anti-myeloma effects of HDAC inhibitors through the addition of other agents has been intensely evaluated. Thus, the treatment of patients with MM using HDAC inhibitors is promising as these drugs exert their effects through multiple modes of action.


HortScience ◽  
2017 ◽  
Vol 52 (5) ◽  
pp. 732-735 ◽  
Author(s):  
Jawwad A. Qureshi ◽  
Barry C. Kostyk ◽  
Philip A. Stansly

Control of Asian citrus psyllid Diaphorina citri Kuwayama and citrus leafminer Phyllocnistis citrella Stainton is important to reduce the spread and severity of huanglongbing (HLB) (citrus greening) and citrus canker diseases, respectively. Insecticides are critical for the management of these pests. We therefore conducted two replicated experiments using spray treatments containing single or multiple modes of action (MoA) insecticides to reduce the incidence of these two pests in bearing citrus. Tank mixing in 47 L·ha−1 (5 gal/acre) of water with synthetic plant terpenes (Requiem 25 EC, Unknown MoA) or adjuvant petroleum oil (PureSpray Green, Unknown MoA) did not improve the effectiveness of the pyrethroid zeta-cypermethrin (Mustang Max 0.15 EC, MoA 3A) against D. citri. Its control with flupyradifurone (Sivanto 200 SL MoA 4D) and PureSpray Green in 935 L·ha−1 (100 gal/acre) water was similar to Mustang Max 0.15 EC and Requiem 25 EC, but mixtures did not provide better control than Mustang Max 0.15 EC alone. Phyllocnistis citrella was controlled only with Sivanto 200 SL and PureSpray Green and Requiem 25 EC alone. The addition of cyantraniliprole (group 28 MoA in A16971 premixed with thiamethoxam MoA 4A), pymetrozine (Fulfill 50 WDG, MoA 9B), or abamectin (Agri-Mek SC, MoA 6) did not improve and in many cases reduced the performance of thiamethoxam (Actara 25 WG, MoA 4A) against D. citri and P. citrella. These results demonstrated no advantage to single applications of multiple MoAs over the most effective active ingredients when applied alone for control of D. citri or P. citrella. Therefore, rotations of these active ingredients would be preferable to mixtures to avoid selection for resistance against multiple MoAs by any one application.


Sign in / Sign up

Export Citation Format

Share Document