scholarly journals Suppression of Virulence of Toxigenic Vibrio cholerae by Anethole through the Cyclic AMP (cAMP)-cAMP Receptor Protein Signaling System

PLoS ONE ◽  
2015 ◽  
Vol 10 (9) ◽  
pp. e0137529 ◽  
Author(s):  
M. Shamim Hasan Zahid ◽  
Sharda Prasad Awasthi ◽  
Masahiro Asakura ◽  
Shruti Chatterjee ◽  
Atsushi Hinenoya ◽  
...  
2008 ◽  
Vol 190 (20) ◽  
pp. 6646-6659 ◽  
Author(s):  
Jiunn C. N. Fong ◽  
Fitnat H. Yildiz

ABSTRACT Vibrio cholerae is a facultative human pathogen. The ability of V. cholerae to form biofilms is crucial for its survival in aquatic habitats between epidemics and is advantageous for host-to-host transmission during epidemics. Formation of mature biofilms requires the production of extracellular matrix components, including Vibrio polysaccharide (VPS) and matrix proteins. Biofilm formation is positively controlled by the transcriptional regulators VpsR and VpsT and is negatively regulated by the quorum-sensing transcriptional regulator HapR, as well as the cyclic AMP (cAMP)-cAMP receptor protein (CRP) regulatory complex. Transcriptome analysis of cyaA (encoding adenylate cyclase) and crp (encoding cAMP receptor protein) deletion mutants revealed that cAMP-CRP negatively regulates transcription of both VPS biosynthesis genes and genes encoding biofilm matrix proteins. Further mutational and expression analysis revealed that cAMP-CRP negatively regulates transcription of vps genes indirectly through its action on vpsR transcription. However, negative regulation of the genes encoding biofilm matrix proteins by cAMP-CRP can also occur independent of VpsR. Transcriptome analysis also revealed that cAMP-CRP regulates the expression of a set of genes encoding diguanylate cyclases (DGCs) and phosphodiesterases. Mutational and phenotypic analysis of the differentially regulated DGCs revealed that a DGC, CdgA, is responsible for the increase in biofilm formation in the Δcrp mutant, showing the connection between of cyclic di-GMP and cAMP signaling in V. cholerae.


2010 ◽  
Vol 76 (13) ◽  
pp. 4233-4240 ◽  
Author(s):  
M. Shamim Hasan Zahid ◽  
T. M. Zaved Waise ◽  
M. Kamruzzaman ◽  
Amar N. Ghosh ◽  
G. Balakrish Nair ◽  
...  

ABSTRACT Toxigenic Vibrio cholerae, the causative agent of the epidemic diarrheal disease cholera, interacts with diverse environmental bacteriophages. These interactions promote genetic diversity or cause selective enrichment of phage-resistant bacterial clones. To identify bacterial genes involved in mediating the phage-resistant phenotype, we screened a transposon insertion library of V. cholerae O1 El Tor biotype strain C6706 to identify mutants showing altered susceptibility to a panel of phages isolated from surface waters in Bangladesh. Mutants with insertion in cyaA or crp genes encoding adenylate cyclase or cyclic AMP (cAMP) receptor protein (CRP), respectively, were susceptible to a phage designated JSF9 to which the parent strain was completely resistant. Application of the cyaA mutant as an indicator strain in environmental phage monitoring enhanced phage detection, and we identified 3 additional phages to which the parent strain was resistant. Incorporation of the cyaA or crp mutations into other V. cholerae O1 strains caused similar alterations in their phage susceptibility patterns, and the susceptibility correlated with the ability of the bacteria to adsorb these phages. Our results suggest that cAMP-CRP-mediated downregulation of phage adsorption may contribute to a mechanism for the V. cholerae O1 strains to survive predation by multiple environmental phages. Furthermore, the cyaA or crp mutant strains may be used as suitable indicators in monitoring cholera phages in the water.


1991 ◽  
Vol 173 (17) ◽  
pp. 5419-5430 ◽  
Author(s):  
P Gerlach ◽  
L Søgaard-Andersen ◽  
H Pedersen ◽  
J Martinussen ◽  
P Valentin-Hansen ◽  
...  

2004 ◽  
Vol 186 (6) ◽  
pp. 1893-1897 ◽  
Author(s):  
A. Derouaux ◽  
S. Halici ◽  
H. Nothaft ◽  
T. Neutelings ◽  
G. Moutzourelis ◽  
...  

ABSTRACT Open reading frame SCO3571 of Streptomyces coelicolor encodes a protein of the cyclic AMP (cAMP) receptor protein (CRP) superfamily of regulatory proteins. A mutant revealed a dramatic defect in germination, followed by growth delay and earlier sporulation. This phenotype correlates with those of an adenylate cyclase (cya) mutant that cannot synthesize cAMP. This finding suggests that S. coelicolor may use a Cya-cAMP-CRP system to trigger complex physiological processes such as morphogenesis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Laura Meyer ◽  
Elsa Germain ◽  
Etienne Maisonneuve

Guanosine penta- or tetraphosphate (known as (p)ppGpp) serves as second messenger to respond to nutrient downshift and other environmental stresses, a phenomenon called stringent response. Accumulation of (p)ppGpp promotes the coordinated inhibition of macromolecule synthesis, as well as the activation of stress response pathways to cope and adapt to harmful conditions. In Escherichia coli, the (p)ppGpp level is tightly regulated by two enzymes, the (p)ppGpp synthetase RelA and the bifunctional synthetase/hydrolase SpoT. We recently identified the small protein YtfK as a key regulator of SpoT-mediated activation of stringent response in E. coli. Here, we further characterized the regulation of ytfK. We observed that ytfK is subjected to catabolite repression and is positively regulated by the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex. Importantly, YtfK contributes to SpoT-dependent accumulation of (p)ppGpp and cell survival in response to glucose starvation. Therefore, regulation of ytfK by the cAMP-CRP appears important to adjust (p)ppGpp level and coordinate cellular metabolism in response to glucose availability.


1999 ◽  
Vol 181 (2) ◽  
pp. 689-694 ◽  
Author(s):  
Kyeong R. Park ◽  
Jean-Christophe Giard ◽  
Juno H. Eom ◽  
Shawn Bearson ◽  
John W. Foster

ABSTRACT Two acid-inducible genes, aniC and aciK, that require anaerobiosis and tyrosine for expression were identified as orf326a encoding a potential amino acid/polyamine antiporter and hyaB encoding hydrogenase I, respectively. Cyclic AMP (cAMP) receptor protein, cAMP, and TyrR, regulator of aromatic amino acid metabolism, were strong positive regulators of both genes.


1998 ◽  
Vol 180 (7) ◽  
pp. 1777-1785 ◽  
Author(s):  
Norbert Peekhaus ◽  
T. Conway

ABSTRACT The gntT gene of Escherichia coli is specifically induced by gluconate and repressed via catabolite repression. Thus, gluconate is both an inducer and a repressor ofgntT expression since gluconate is a catabolite-repressing sugar. In a gntR deletion mutant, the expression of a chromosomal gntT::lacZ fusion is both high and constitutive, confirming that GntR is the negative regulator of gntT. Indeed, GntR binds to two consensus gnt operator sites; one overlaps the −10 region of the gntT promoter, and the other is centered at +120 with respect to the transcriptional start site. The binding of GntR to these sites was proven in vitro by gel redardation assays and in vivo by site-directed mutagenesis of the binding sites. Binding of GntR to the operators is eliminated by gluconate and also by 6-phosphogluconate at a 10-fold-higher concentration. Interestingly, when gntR deletion strains are grown in the presence of gluconate, there is a twofold decrease in gntTexpression which is independent of catabolite repression and binding of GntR to the operator sites. This novel response of gntRmutants to the inducer is termed ultrarepression. Transcription ofgntT is activated by binding of the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex to a CRP binding site positioned at −71 upstream of the gntT transcription start site.


Sign in / Sign up

Export Citation Format

Share Document