scholarly journals Assessing the Capacity of Plant Species to Accumulate Particulate Matter in Beijing, China

PLoS ONE ◽  
2015 ◽  
Vol 10 (10) ◽  
pp. e0140664 ◽  
Author(s):  
Li Mo ◽  
Zeyu Ma ◽  
Yansen Xu ◽  
Fengbin Sun ◽  
Xiaoxiu Lun ◽  
...  
Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7290
Author(s):  
Miron Kaliszewski ◽  
Maksymilian Włodarski ◽  
Jarosław Młyńczak ◽  
Krzysztof Kopczyński

This study shows the results of air monitoring in high- and low-occupancy rooms using two combinations of sensors, AeroTrak8220(TSI)/OPC-N3 (AlphaSense, Great Notley, UK) and OPC-N3/PMS5003 (Plantower, Beijing, China), respectively. The tests were conducted in a flat in Warsaw during the restrictions imposed due to the COVID-19 lockdown. The results showed that OPC-N3 underestimates the PN (particle number concentration) by about 2–3 times compared to the AeroTrak8220. Subsequently, the OPC-N3 was compared with another low-cost sensor, the PMS5003. Both devices showed similar efficiency in PN estimation, whereas PM (particulate matter) concentration estimation differed significantly. Moreover, the relationship among the PM1–PM2.5–PM10 readings obtained with the PMS5003 appeared improbably linear regarding the natural indoor conditions. The correlation of PM concentrations obtained with the PMS5003 suggests an oversimplified calculation method of PM. The studies also demonstrated that PM1, PM2.5, and PM10 concentrations in the high- to low-occupancy rooms were about 3, 2, and 1.5 times, respectively. On the other hand, the use of an air purifier considerably reduced the PM concentrations to similar levels in both rooms. All the sensors showed that frying and toast-making were the major sources of particulate matter, about 10 times higher compared to average levels. Considerably lower particle levels were measured in the low-occupancy room.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3876 ◽  
Author(s):  
Zhe Liu ◽  
Xueli Chen ◽  
Jinyang Cai ◽  
Tomas Baležentis ◽  
Yue Li

Air pollution has become an increasingly serious environmental problem in China. Especially in winter, the air pollution in northern China becomes even worse due to winter heating. The “coal to gas” policy, which uses natural gas to replace coal in the heating system in winter, was implemented in Beijing in the year 2013. However, the effects of this policy reform have not been examined. Using a panel dataset of 16 districts in Beijing, this paper employs a first difference model to examine the impact of the “coal to gas” policy on air quality. Strong evidence shows that the “coal to gas” policy has significantly improved the air quality in Beijing. On average, the “coal to gas” policy reduced sulfur dioxide (SO2), nitrogen dioxide (NO2), particulate matter smaller than 10 µm (PM10), particulate matter smaller than 2.5 µm (PM2.5) and carbon monoxide (CO) by 12.08%, 4.89%, 13.07%, 11.94% and 11.10% per year, respectively. We find that the “coal to gas” policy is more effective in areas with less energy use efficiency. The finding of this paper suggests that the government should continue to implement the “coal to gas” policy, so as to alleviate the air pollution in Beijing, China.


Sign in / Sign up

Export Citation Format

Share Document