scholarly journals Increased dermal collagen bundle alignment in systemic sclerosis is associated with a cell migration signature and role of Arhgdib in directed fibroblast migration on aligned ECMs

PLoS ONE ◽  
2017 ◽  
Vol 12 (6) ◽  
pp. e0180751 ◽  
Author(s):  
Lizhi Cao ◽  
Robert Lafyatis ◽  
Linda C. Burkly
2009 ◽  
Vol 297 (4) ◽  
pp. C802-C813 ◽  
Author(s):  
Erdene Baljinnyam ◽  
Kousaku Iwatsubo ◽  
Reiko Kurotani ◽  
Xu Wang ◽  
Coskun Ulucan ◽  
...  

Melanoma, the most malignant form of human skin cancer, has a poor prognosis due to its strong metastatic ability. It was recently demonstrated that Epac, an effector molecule of cAMP, is involved in regulating cell migration; however, the role of Epac in melanoma cell migration remains unclear. We thus examined whether Epac regulates cell migration and metastasis of melanoma. Epac activation, by either specific agonist or overexpression of Epac, increased melanoma cell migration. Deletion of endogenous Epac with small interfering RNA decreased basal melanoma cell migration. These data suggested a major role of Epac in melanoma cell migration. Epac-induced cell migration was mediated by translocation of syndecan-2, a cell-surface heparan sulfate proteoglycan, to lipid rafts. This syndecan-2 translocation was regulated by tubulin polymerization via the Epac/phosphoinositol-3 kinase pathway. Epac-induced cell migration was also regulated by the production of heparan sulfate, a major extracellular matrix. Epac-induced heparan sulfate production was attributable to the increased expression of N-deacetylase/ N-sulfotransferase-1 (NDST-1) accompanied by an increased NDST-1 translation rate. Finally, Epac overexpression enhanced lung colonization of melanoma cells in mice. Taken together, these data indicate that Epac regulates melanoma cell migration/metastasis mostly via syndecan-2 translocation and heparan sulfate production.


2020 ◽  
Author(s):  
Anna Polesskaya ◽  
Arthur Boutillon ◽  
Yanan Wang ◽  
Marc Lavielle ◽  
Sophie Vacher ◽  
...  

ABSTRACTBranched actin networks polymerized by the Arp2/3 complex are critical for cell migration. The WAVE complex is the major Arp2/3 activator at the leading edge of migrating cells. However, multiple distinct WAVE complexes can be assembled in a cell, due to the combinatorial complexity of paralogous subunits. When systematically analyzing the contribution of each WAVE complex subunit to the metastasis-free survival of breast cancer patients, we found that overexpression of the CYFIP2 subunit was surprisingly associated with good prognosis. Gain and loss of function experiments in transformed and untransformed mammary epithelial cells revealed that cell migration was always inversely related to CYFIP2 levels. The role of CYFIP2 was systematically opposite to the role of the paralogous subunit CYFIP1 or of the NCKAP1 subunit. The specific CYFIP2 function in inhibiting cell migration was related to its unique ability to down-regulate classical pro-migratory WAVE complexes. The anti-migratory function of CYFIP2 was also revealed in migration of prechordal plate cells during gastrulation of the zebrafish embryo, indicating that the unique function of CYFIP2 is critically important in both physiological and pathophysiological migrations.


2020 ◽  
Author(s):  
J. Feng ◽  
L. Tang ◽  
Z. Liu ◽  
S. Dong ◽  
L. Zhou ◽  
...  

ABSTRACTThe bleb morphology and its changes are an important mechanism of cell’s amoeboid migration. By releasing bonds between the membrane and the cortex of a cell, the formation of bleb can be observed experimentally, but the mechanism that affects the size and shape of this kind of bleb is waiting for further study. In this paper, a two-dimensional fluid-solid coupling model is established to describe a cell with membrane, cortex and cytoplasm in a solution, and a numerical solving method for the fluid-solid coupling model is developed to simulate the behaviors of cell bleb. The effects of parameters, such as the number of broken bonds, the viscosity coefficient of the cortex, and the cell’s membrane modulus on the size and the shape of the bleb were investigated. Numerical results show that the model is effective to simulate the formation and evolution of cell’s bleb, and derive the contribution of several affecting factors to the bleb shape and size clearly.SIGNIFICANCETo understand the process of cell migration with bleb pseudopods in the amoeba cell migration, it is necessary to study the formation mechanism of cells protruding bleb. In this paper, we propose a reasonable and reliable cell numerical model. With this model we successfully simulate the bleb phenomenon consistent with the experimental phenomenon by changing the key impact factors. The method in this paper is applicable to the cell model of amoeba cell migration pattern, which helps to understand the important role of blebs in the process of cell migration.


2019 ◽  
Vol 63 (5) ◽  
pp. 579-594 ◽  
Author(s):  
Guillem Lambies ◽  
Antonio García de Herreros ◽  
Víctor M. Díaz

Abstract Cell migration is a multifactorial/multistep process that requires the concerted action of growth and transcriptional factors, motor proteins, extracellular matrix remodeling and proteases. In this review, we focus on the role of transcription factors modulating Epithelial-to-Mesenchymal Transition (EMT-TFs), a fundamental process supporting both physiological and pathological cell migration. These EMT-TFs (Snail1/2, Twist1/2 and Zeb1/2) are labile proteins which should be stabilized to initiate EMT and provide full migratory and invasive properties. We present here a family of enzymes, the deubiquitinases (DUBs) which have a crucial role in counteracting polyubiquitination and proteasomal degradation of EMT-TFs after their induction by TGFβ, inflammatory cytokines and hypoxia. We also describe the DUBs promoting the stabilization of Smads, TGFβ receptors and other key proteins involved in transduction pathways controlling EMT.


2010 ◽  
Vol 30 (1) ◽  
pp. 28-32
Author(s):  
Jian-fei WANG ◽  
Ying HOU ◽  
Rui-liang GE ◽  
Yi-zheng WANG ◽  
Feng SHEN ◽  
...  

2014 ◽  
Vol 9 (4) ◽  
pp. 279-300 ◽  
Author(s):  
James Dunne ◽  
Julius Bankole ◽  
Kevin Keen

Sign in / Sign up

Export Citation Format

Share Document