scholarly journals A simple in vitro tumor chemosensitivity assay based on cell penetrating peptide tagged luciferase

PLoS ONE ◽  
2017 ◽  
Vol 12 (11) ◽  
pp. e0186184 ◽  
Author(s):  
Tingyu Yu ◽  
Jiao Lin ◽  
Jin Zhao ◽  
Wei Huang ◽  
Lingwen Zeng ◽  
...  
Zygote ◽  
2014 ◽  
Vol 24 (1) ◽  
pp. 48-57 ◽  
Author(s):  
Iana S. Campelo ◽  
Alexsandra F. Pereira ◽  
Agostinho S. Alcântara-Neto ◽  
Natalia G. Canel ◽  
Joanna M.G. Souza-Fabjan ◽  
...  

SummaryThe present study investigated the effects of crotamine, a cell-penetrating peptide from rattlesnake venom, at different exposure times and concentrations, on both developmental competence and gene expression (ATP1A1, AQP3, GLUT1 and GLUT3) of in vitro fertilized (IVF) bovine embryos. In Experiment 1, presumptive zygotes were exposed to 0.1 μM crotamine for 6, 12 or 24 h and control groups (vehicle and IVF) were included. In Experiment 2, presumptive zygotes were exposed to 0 (vehicle), 0.1, 1 and 10 μM crotamine for 24 h. Additionally, to visualize crotamine uptake, embryos were exposed to rhodamine B-labelled crotamine and subjected to confocal microscopy. In Experiment 1, no difference (P > 0.05) was observed among different exposure times and control groups for cleavage and blastocyst rates and total cells number per blastocyst. Within each exposure time, mRNA levels were similar (P > 0.05) in embryos cultured with or without crotamine. In Experiment 2, concentrations as high as 10 μM crotamine did not affect (P > 0.05) the blastocyst rate. Crotamine at 0.1 and 10 μM did not alter mRNA levels when compared with the control (P > 0.05). Remarkably, only 1 μM crotamine decreased both ATP1A1 and AQP3 expression levels relative to the control group (P < 0.05). Also, it was possible to visualize the intracellular localization of crotamine. These results indicate that crotamine can translocate intact IVF bovine embryos and its application in the culture medium is possible at concentrations from 0.1–10 μM for 6–24 h.


RSC Advances ◽  
2018 ◽  
Vol 8 (43) ◽  
pp. 24084-24093 ◽  
Author(s):  
Qi Zhang ◽  
Jing Wang ◽  
Hao Zhang ◽  
Dan Liu ◽  
Linlin Ming ◽  
...  

Hydrophobic cell penetrating peptide PFVYLI-modified liposomes have been developed for the targeted delivery of PTX into tumors.


2016 ◽  
Vol 33 (10) ◽  
pp. 1405-1413 ◽  
Author(s):  
Iana S. Campelo ◽  
Natalia G. Canel ◽  
Romina J. Bevacqua ◽  
Luciana M. Melo ◽  
Gandhi Rádis-Baptista ◽  
...  

2005 ◽  
Vol 390 (2) ◽  
pp. 603-612 ◽  
Author(s):  
Miguel Mano ◽  
Cristina Teodósio ◽  
Artur Paiva ◽  
Sérgio Simões ◽  
Maria C. Pedroso de Lima

Cell-penetrating peptides have been shown to translocate across eukaryotic cell membranes through a temperature-insensitive and energy-independent mechanism that does not involve membrane receptors or transporters. Although cell-penetrating peptides have been successfully used to mediate the intracellular delivery of a wide variety of molecules of pharmacological interest both in vitro and in vivo, the mechanisms by which cellular uptake occurs remain unclear. In the face of recent reports demonstrating that uptake of cell-penetrating peptides occurs through previously described endocytic pathways, or is a consequence of fixation artifacts, we conducted a critical re-evaluation of the mechanism responsible for the cellular uptake of the S413-PV karyophilic cell-penetrating peptide. We report that the S413-PV peptide is able to accumulate inside live cells very efficiently through a rapid, dose-dependent and non-toxic process, providing clear evidence that the cellular uptake of this peptide cannot be attributed to fixation artifacts. Comparative analysis of peptide uptake into mutant cells lacking heparan sulphate proteoglycans demonstrates that their presence at the cell surface facilitates the cellular uptake of the S413-PV peptide, particularly at low peptide concentrations. Most importantly, our results clearly demonstrate that, in addition to endocytosis, which is only evident at low peptide concentrations, the efficient cellular uptake of the S413-PV cell-penetrating peptide occurs mainly through an alternative, non-endocytic mechanism, most likely involving direct penetration across cell membranes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Siyuan Yu ◽  
Han Yang ◽  
Tingdong Li ◽  
Haifeng Pan ◽  
Shuling Ren ◽  
...  

AbstractProtein delivery with cell-penetrating peptide is opening up the possibility of using targets inside cells for therapeutic or biological applications; however, cell-penetrating peptide-mediated protein delivery commonly suffers from ineffective endosomal escape and low tolerance in serum, thereby limiting in vivo efficacy. Here, we present an intracellular protein delivery system consisting of four modules in series: cell-penetrating peptide, pH-dependent membrane active peptide, endosome-specific protease sites and a leucine zipper. This system exhibits enhanced delivery efficiency and serum tolerance, depending on proteolytic cleavage-facilitated endosomal escape and leucine zipper-based dimerisation. Intravenous injection of protein phosphatase 1B fused with this system successfully suppresses the tumour necrosis factor-α-induced systemic inflammatory response and acetaminophen-induced acute liver failure in a mouse model. We believe that the strategy of using multifunctional chimaeric peptides is valuable for the development of cell-penetrating peptide-based protein delivery systems, and facilitate the development of biological macromolecular drugs for use against intracellular targets.


Sign in / Sign up

Export Citation Format

Share Document