scholarly journals Polyvinyl alcohol-iodine induced corneal epithelial injury in vivo and its protection by topical rebamipide treatment

PLoS ONE ◽  
2018 ◽  
Vol 13 (11) ◽  
pp. e0208198 ◽  
Author(s):  
Masamichi Fukuda ◽  
Shinsuke Shibata ◽  
Naoko Shibata ◽  
Nobuyuki Fujita ◽  
Hisanori Miyashita ◽  
...  
Eye ◽  
2021 ◽  
Author(s):  
Huping Wu ◽  
Lan Li ◽  
Shunrong Luo ◽  
Xie Fang ◽  
Xumin Shang ◽  
...  

Abstract Objectives To evaluate the safety and efficacy of repeated corneal collagen crosslinking assisted by transepithelial double-cycle iontophoresis (DI-CXL) in the management of keratoconus progression after primary CXL. Methods A retrospective analysis was conducted in the patients who underwent repeated CXL between 2016 and 2018. These patients were treated with DI-CXL if keratoconus progression was confirmed after primary CXL. Scoring of ocular pain and corneal epithelial damage, visual acuity, corneal tomography, in vivo corneal confocal microscopy (IVCM) was performed before and at 3, 6, 12, and 24 months after DI-CXL. Results Overall, 21 eyes of 12 patients (mean age 17.3 ± 1.9 years) were included in this study. Before DI-CXL, an average increase of 4.26 D in Kmax was detected in these patients with a mean follow-up interval of (23.0 ± 13.7) months. After DI-CXL, corneal epithelial damage rapidly recovered within days. Visual acuity remained unchanged with follow-up of 24 months. When compared to baseline, significant decreases were observed in Kmax (at 3 months) and K2 (at 3 and 6 months) after DI-CXL. Corneal thickness of thinnest point significantly decreased at 3 months postoperatively. When compared to baseline, no significant differences were found in any of the refractive or tomographic parameters at 12 and 24 months. IVCM revealed trabecular patterned hyperdense tissues after DI-CXL in the anterior stroma at the depth of 200 μm or more. No corneal infiltration or persistent epithelial defect was recorded after DI-CXL. Conclusion DI-CXL is safe and effective as a good alternative in stabilizing keratoconus progression after primary CXL.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 349
Author(s):  
Anam Razzaq ◽  
Zaheer Ullah Khan ◽  
Aasim Saeed ◽  
Kiramat Ali Shah ◽  
Naveed Ullah Khan ◽  
...  

Diabetic wound infections caused by conventional antibiotic-resistant Staphylococcus aureus strains are fast emerging, leading to life-threatening situations (e.g., high costs, morbidity, and mortality) associated with delayed healing and chronic inflammation. Electrospinning is one of the most widely used techniques for the fabrication of nanofibers (NFs), induced by a high voltage applied to a drug-loaded polymer solution. Particular attention is given to electrospun NFs for pharmaceutical applications (e.g., original drug delivery systems) and tissue regeneration (e.g., as tissue scaffolds). However, there is a paucity of reports related to their application in diabetic wound infections. Therefore, we prepared eco-friendly, biodegradable, low-immunogenic, and biocompatible gelatin (GEL)/polyvinyl alcohol (PVA) electrospun NFs (BNFs), in which we loaded the broad-spectrum antibiotic cephradine (Ceph). The resulting drug-loaded NFs (LNFs) were characterized physically using ultraviolet-visible (UV-Vis) spectrophotometry (for drug loading capacity (LC), drug encapsulation efficiency (EE), and drug release kinetics determination), thermogravimetric analysis (TGA) (for thermostability evaluation), scanning electron microscopy (SEM) (for surface morphology analysis), and Fourier-transform infrared spectroscopy (FTIR) (for functional group identification). LNFs were further characterized biologically by in-vitro assessment of their potency against S. aureus clinical strains (N = 16) using the Kirby–Bauer test and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, by ex-vivo assessment to evaluate their cytotoxicity against primary human epidermal keratinocytes using MTT assay, and by in-vivo assessment to estimate their diabetic chronic wound-healing efficiency using NcZ10 diabetic/obese mice (N = 18). Thin and uniform NFs with a smooth surface and standard size (<400 nm) were observed by SEM at the optimized 5:5 (GEL:PVA) volumetric ratio. FTIR analyses confirmed the drug loading into BNFs. Compared to free Ceph, LNFs were significantly more thermostable and exhibited sustained/controlled Ceph release. LNFs also exerted a significantly stronger antibacterial activity both in-vitro and in-vivo. LNFs were significantly safer and more efficient for bacterial clearance-induced faster chronic wound healing. LNF-based therapy could be employed as a valuable dressing material to heal S. aureus-induced chronic wounds in diabetic subjects.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Payal Gupta ◽  
Purusottam Mishra ◽  
Lalita Mehra ◽  
Kartikey Rastogi ◽  
Ramasare Prasad ◽  
...  

Aim: Fungal biofilms interfere with the wound healing processes. Henceforth, the study aims to fabricate a biomaterial-based nano-scaffold with the dual functionalities of wound healing and antibiofilm activity. Methods: Nanofibers comprising acacia gum, polyvinyl alcohol and inclusion complex of eugenol in β-cyclodextrin (EG-NF) were synthesized using electrospinning. Antibiofilm studies were performed on Candida species, and the wound-healing activity was evaluated through an in vivo excision wound rat model. Results: The EG-NF potentially eradicated the mature biofilm of Candida species and their clinical isolates. Further, EG-NF also enhanced the re-epithelization and speed of wound healing in in vivo rat experiments. Conclusion: The study established the bifunctional applications of eugenol nanofibers as a transdermal substitute with antifungal potency.


2021 ◽  
Vol 11 (1) ◽  
pp. 85-92
Author(s):  
Lin Cai

This study was designed to establish the composition of wound bandages based on silver nanoparticle (AgNP)loaded polyvinyl alcohol (PVA) nanogels. The AgNP nanogel (Ag-nGel) was fabricated by the fructose-mediated reduction of silver nitrate solutions within the PVA matrix. The influence of different experimental limitations on PVA nanogel formations were examined. The nanogel particle sizes were evaluated by transmission electron microscopy and determined to range from ∼10–50 nm. Additionally, glycerol were added to the Ag-nGels, and the resulting compositions (Ag-nGel-Glu) were coated on cotton fabrics to generate the wound bandaging composite. The cumulative drug release profile of the silver from the bandage was found to be ∼38% of the total loading after two days. Additionally, antibacterial efficacy was developed for gram positive and negative microorganisms. Moreover, we examined in vivo healing of skin wounds formed in mouse models over 21 days. In contrast to the untreated wounds, rapid healing was perceived in the Ag-nGel-Glu-treated wound with less damaging. These findings indicate that Ag-nGel-Glu-based bandaging materials could be a potential candidate for wound bandaging applications in the future.


1999 ◽  
Vol 112 (5) ◽  
pp. 613-622 ◽  
Author(s):  
J.V. Jester ◽  
T. Moller-Pedersen ◽  
J. Huang ◽  
C.M. Sax ◽  
W.T. Kays ◽  
...  

In vivo corneal light scattering measurements using a novel confocal microscope demonstrated greatly increased backscatter from corneal stromal fibrocytes (keratocytes) in opaque compared to transparent corneal tissue in both humans and rabbits. Additionally, two water-soluble proteins, transketolase (TKT) and aldehyde dehydrogenase class 1 (ALDH1), isolated from rabbit keratocytes showed unexpectedly abundant expression (approximately 30% of the soluble protein) in transparent corneas and markedly reduced levels in opaque scleral fibroblasts or keratocytes from hazy, freeze injured regions of the cornea. Together these data suggest that the relatively high expressions of TKT and ALDH1 contribute to corneal transparency in the rabbit at the cellular level, reminiscent of enzyme-crystallins in the lens. We also note that ALDH1 accumulates in the rabbit corneal epithelial cells, rather than ALDH3 as seen in other mammals, consistent with the taxon-specificity observed among lens enzyme-crystallins. Our results suggest that corneal cells, like lens cells, may preferentially express water-soluble proteins, often enzymes, for controlling their optical properties.


2021 ◽  
pp. 51764
Author(s):  
Alireza Akbari ◽  
Shahram Rabbani ◽  
Shiva Irani ◽  
Mojgan Zandi ◽  
Fereshteh Sharifi ◽  
...  

2021 ◽  
Vol 30 (Sup9a) ◽  
pp. IVi-IVx
Author(s):  
Chukwuma O Agubata ◽  
Mary A Mbah ◽  
Paul A Akpa ◽  
Godwin Ugwu

Aim: Self-healing, swellable and biodegradable polymers are vital materials that may facilitate the different stages of wound healing. The aim of this research was to prepare wound healing films using self-healing polyvinyl alcohol (PVA), swellable hydroxypropyl methylcellulose (HPMC), biodegradable polyglycolic acid (PGA) sutures and ciprofloxacin antibiotic for improved treatment outcome. Methods: Films were formulated through aqueous-based mixing of varying amounts of polyvinyl alcohol (10–20% weight/weight (w/w)) and hydroxypropyl methylcellulose (0.5, 1% w/w) with fixed quantities of ciprofloxacin. PGA sutures were placed as grids within the wet mixtures of the polymers and ciprofloxacin, and thereafter products were air dried. The formulated films were evaluated for swelling ratio, breaking elongation, folding endurance, moisture uptake and loss, compatibility and in vitro antibiotic release. Furthermore, in vivo wound healing was studied using excision model and histopathological examinations. Results: Swelling ratios were above 1.0 and the films were minimally stretchable, with folding endurance greater than 500. Films were stable while moisture uptake and loss were observed to be less than 30%. Among the optimised hydrogel batches, those containing 10% w/w PVA and 1% w/w HPMC with no PGA showed the highest drug release of 73%, whereas the batches with higher PGA content showed higher percentage wound size reduction with minimal scar. The completeness of wound healing with batches containing PVA, HPMC, ciprofloxacin and PGA, along with the standard, is evident considering the massive cornification, regeneration of the epithelial front and stratum spinosum. Conclusion: The findings show that polymer-based multifunctional composite films are suitable for use as dressings for improved wound healing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marwa H. Gouda ◽  
Safaa M. Ali ◽  
Sarah Samir Othman ◽  
Samia A. Abd Al-Aziz ◽  
Marwa M. Abu-Serie ◽  
...  

AbstractWound healing is a complicated multicellular process that involves several kinds of cells including macrophages, fibroblasts, endothelial cells, keratinocytes and platelets that are leading to their differentiation towards an anti-inflammatory response for producing several chemokines, cytokine and growth factors. In this study, electrospun nanofiber scaffold named (MNS) is composed of polyvinyl alcohol (PVA)/iota carrageenan (IC) and doped with partially reduced graphene oxide (prGO) that is successfully synthesized for wound healing and skin repair. The fabricated MNS was tested in case of infection and un-infection with E. coli and Staphylococcus and in both of the presence and in the absence of yeast as a natural nutritional supplement. Numerous biochemical parameters including total protein, albumin, urea and LDH, and hematological parameters were evaluated. Results revealed that the MNS was proved to be effective on most of the measured parameters and had exhibited efficient antibacterial inhibition activity. Whereas it can be used as an effective antimicrobial agent in wound healing, however, histopathological findings confirmed that the MNS caused re-epithelialization and the presence of yeast induced hair follicles growth and subsequently it may be used to hide formed head wound scar.


Sign in / Sign up

Export Citation Format

Share Document