scholarly journals Discriminant validity of 3D joint kinematics and centre of mass displacement measured by inertial sensor technology during the unipodal stance task

PLoS ONE ◽  
2020 ◽  
Vol 15 (5) ◽  
pp. e0232513
Author(s):  
R. van der Straaten ◽  
M. Wesseling ◽  
I. Jonkers ◽  
B. Vanwanseele ◽  
A. K. B. D. Bruijnes ◽  
...  
2020 ◽  
Vol 10 (11) ◽  
pp. 3893
Author(s):  
Nina Gras ◽  
Torsten Brauner ◽  
Scott Wearing ◽  
Thomas Horstmann

Progression of the difficulty of agility exercises in sport is often achieved by changing the stability of the support surface via graded sensorimotor training devices. However, little is known about the challenge imposed to postural equilibrium by these graded devices. This study quantified the instability provided by four sensorimotor training devices typically used to enhance athletic performance; three progressively unstable balance pads (ST1–3) and an oscillatory platform (PM). Twenty-five (13 female, 12 male) young adults (age, 26 ± 3 yr; height, 1.76 ± 0.10 m; and weight, 69 ± 12 kg), completed seven unipedal balance conditions involving stable and progressively unstable surfaces that involved four sensorimotor training devices (ST1-3, PM) and their combination (PM-ST1, PM-ST2). An inertial sensor, mounted over the lumbar spine, was used to monitor Centre of Mass (COM) displacement in each condition. Potential differences in COM displacement between conditions were assessed using a mixed-model analysis of variance. COM displacement differed between training devices; with a progressive, though non-linear, increase in COM displacement from the most (ST1) to the least (ST3) stable balance pad. However, there was no significant difference in COM displacement between the least stable balance pad (ST3) and the oscillatory platform used in isolation (PM) or in combination with balance pads (PM-ST1, PM-ST2). These novel findings have important practical implications for the design of progressive sensorimotor training programs in sport.


Author(s):  
Firas Massaad ◽  
Frédéric Dierick ◽  
Adélaïde van den Hecke ◽  
Christine Detrembleur

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5167
Author(s):  
Nicky Baker ◽  
Claire Gough ◽  
Susan J. Gordon

Compared to laboratory equipment inertial sensors are inexpensive and portable, permitting the measurement of postural sway and balance to be conducted in any setting. This systematic review investigated the inter-sensor and test-retest reliability, and concurrent and discriminant validity to measure static and dynamic balance in healthy adults. Medline, PubMed, Embase, Scopus, CINAHL, and Web of Science were searched to January 2021. Nineteen studies met the inclusion criteria. Meta-analysis was possible for reliability studies only and it was found that inertial sensors are reliable to measure static standing eyes open. A synthesis of the included studies shows moderate to good reliability for dynamic balance. Concurrent validity is moderate for both static and dynamic balance. Sensors discriminate old from young adults by amplitude of mediolateral sway, gait velocity, step length, and turn speed. Fallers are discriminated from non-fallers by sensor measures during walking, stepping, and sit to stand. The accuracy of discrimination is unable to be determined conclusively. Using inertial sensors to measure postural sway in healthy adults provides real-time data collected in the natural environment and enables discrimination between fallers and non-fallers. The ability of inertial sensors to identify differences in postural sway components related to altered performance in clinical tests can inform targeted interventions for the prevention of falls and near falls.


Author(s):  
Gunjan Patel ◽  
Rajani Mullerpatan ◽  
Bela Agarwal ◽  
Triveni Shetty ◽  
Rajdeep Ojha ◽  
...  

Wearable inertial sensor-based motion analysis systems are promising alternatives to standard camera-based motion capture systems for the measurement of gait parameters and joint kinematics. These wearable sensors, unlike camera-based gold standard systems, find usefulness in outdoor natural environment along with confined indoor laboratory-based environment due to miniature size and wireless data transmission. This study reports validation of our developed (i-Sens) wearable motion analysis system against standard motion capture system. Gait analysis was performed at self-selected speed on non-disabled volunteers in indoor ( n = 15) and outdoor ( n = 8) environments. Two i-Sens units were placed at the level of knee and hip along with passive markers (for indoor study only) for simultaneous 3D motion capture using a motion capture system. Mean absolute percentage error (MAPE) was computed for spatiotemporal parameters from the i-Sens system versus the motion capture system as a true reference. Mean and standard deviation of kinematic data for a gait cycle were plotted for both systems against normative data. Joint kinematics data were analyzed to compute the root mean squared error (RMSE) and Pearson’s correlation coefficient. Kinematic plots indicate a high degree of accuracy of the i-Sens system with the reference system. Excellent positive correlation was observed between the two systems in terms of hip and knee joint angles (Indoor: hip 3.98° ± 1.03°, knee 6.48° ± 1.91°, Outdoor: hip 3.94° ± 0.78°, knee 5.82° ± 0.99°) with low RMSE. Reliability characteristics (defined using standard statistical thresholds of MAPE) of stride length, cadence, walking speed in both outdoor and indoor environment were well within the “Good” category. The i-Sens system has emerged as a potentially cost-effective, valid, accurate, and reliable alternative to expensive, standard motion capture systems for gait analysis. Further clinical trials using the i-Sens system are warranted on participants across different age groups.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 141 ◽  
Author(s):  
Rob Van der Straaten ◽  
Amber K. B. D. Bruijnes ◽  
Benedicte Vanwanseele ◽  
Ilse Jonkers ◽  
Liesbet De Baets ◽  
...  

This study evaluates the reliability and agreement of the 3D range of motion (ROM) of trunk and lower limb joints, measured by inertial measurement units (MVN BIOMECH Awinda, Xsens Technologies), during a single leg squat (SLS) and sit to stand (STS) task. Furthermore, distinction was made between movement phases, to discuss the reliability and agreement for different phases of both movement tasks. Twenty healthy participants were measured on two testing days. On day one, measurements were conducted by two operators to determine the within-session and between-operator reliability and agreement. On day two, measurements were conducted by the same operator, to determine the between-session reliability and agreement. The SLS task had lower within-session reliability and agreement compared with between-session and between-operator reliability and agreement. The reliability and agreement of the hip, knee, and ankle ROM in the sagittal plane were good for both phases of the SLS task. For both phases of STS task, within-session reliability and agreement were good, and between-session and between-operator reliability and agreement were lower in all planes. As both tasks are physically demanding, differences may be explained by inconsistent movement strategies. These results show that inertial sensor systems show promise for use in further research to investigate (mal)adaptive movement strategies.


Micromachines ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 411 ◽  
Author(s):  
Jae-Neung Lee ◽  
Yeong-Hyeon Byeon ◽  
Keun-Chang Kwak

This paper discusses the classification of horse gaits for self-coaching using an ensemble stacked auto-encoder (ESAE) based on wavelet packets from the motion data of the horse rider. For this purpose, we built an ESAE and used probability values at the end of the softmax classifier. First, we initialized variables such as hidden nodes, weight, and max epoch using the options of the auto-encoder (AE). Second, the ESAE model is trained by feedforward, back propagation, and gradient calculation. Next, the parameters are updated by a gradient descent mechanism as new parameters. Finally, once the error value is satisfied, the algorithm terminates. The experiments were performed to classify horse gaits for self-coaching. We constructed the motion data of a horse rider. For the experiment, an expert horse rider of the national team wore a suit containing 16 inertial sensors based on a wireless network. To improve and quantify the performance of the classification, we used three methods (wavelet packet, statistical value, and ensemble model), as well as cross entropy with mean squared error. The experimental results revealed that the proposed method showed good performance when compared with conventional algorithms such as the support vector machine (SVM).


2006 ◽  
Vol 24 ◽  
pp. S171-S172
Author(s):  
Anne McNee ◽  
Jean-Pierre Lin ◽  
Elspeth Will ◽  
Linda Eve ◽  
Martin Gough ◽  
...  

2011 ◽  
Vol 2011 (0) ◽  
pp. 361-363
Author(s):  
James B Lee ◽  
Raymond Leadbetter ◽  
Daniel A James ◽  
Brendan J Burkett ◽  
David Thiel

2017 ◽  
Vol 51 ◽  
pp. 41-46 ◽  
Author(s):  
R.A. Weinert-Aplin ◽  
M. Twiste ◽  
H.L. Jarvis ◽  
A.N. Bennett ◽  
R.J. Baker

Sign in / Sign up

Export Citation Format

Share Document