scholarly journals Biogenic iron oxide nanoparticles enhance callogenesis and regeneration pattern of recalcitrant Cicer arietinum L.

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0242829
Author(s):  
Samra Irum ◽  
Nyla Jabeen ◽  
Khawaja Shafique Ahmad ◽  
Saima Shafique ◽  
Talha Farooq Khan ◽  
...  

This study is the first report on the biosynthesized iron oxide nanoparticles (IONPs) which mediate in-vitro callus induction and shoot regeneration in economically important recalcitrant chickpea crop (Cicer arietinum L.). Here, we used leaf extract of Cymbopogon jwarancusa for the synthesis of IONPs in order to achieve a better biocompatibility. The bioactive compounds in C. jwarancusa leaf extract served as both reducing and capping agents in the fabrication process of IONPs. Field emission scanning electron microscopy (FE-SEM) revealed rods like surface morphology of IONPs with an average diameter of 50±0.2 nm. Energy-dispersive X-ray spectroscopy (EDS) depicted formation of pure IONPs with 69.84% Fe and 30.16% O2. X-ray diffractometry (XRD) and attenuated total reflectance-fourier transform infrared (ATR-FTIR) validate the crystalline structure, chemical analysis detect the presence of various biomolecular fingerprints in the as synthesized IONPs. UV-visible absorption spectroscopy depicts activity of IONPs under visible light. Thermo-gravimetric analysis (TGA) displayed thermal loss of organic capping around 500°C and confirmed their stabilization. The biosynthesized IONPs revealed promising results in callus induction, shoot regeneration and root induction of chickpea plants. Both chickpea varieties Punjab-Noor 09 and Bittle-98 explants, Embryo axes (EA) and Embryo axes plus adjacent part of cotyledon (EXC) demonstrated dose-dependent response. Among all explants, EXC of Punjab-Noor variety showed the highest callogenesis (96%) and shoot regeneration frequency (88%), while root induction frequency was also increased to 83%. Iron content was quantified in regenerated chickpea varieties through inductively coupled plasma-optical emission spectrometry. The quantity of iron is significantly increased in Punjab-Noor regenerated plants (4.88 mg/g) as compare to control treated plants (2.42 mg/g). We found that IONPs enhance chickpea growth pattern and keep regenerated plantlets infection free by providing an optimum environment for rapid growth and development. Thus, IONPs synthesized through green process can be utilized in tissue culture studies in other important recalcitrant legumes crops.

Author(s):  
A. Leema Rose ◽  
B. Shabushree ◽  
Preeja P. Thattil

Aims: The present study focused on the optical and morphological characterization, antioxidant and antimicrobial activities of the biogenically synthesized iron oxide nanoparticles.  Methods: The preliminary phytochemical screening was done for the leaf extract of Annona reticulate L. The leaf extract and Ferrous Sulphate heptahydrate were used to synthesize the iron oxide nanoparticles under room temperature. The determination of antioxidant activity was done using DPPH free radical scavenging assay and the determination of antimicrobial activity using disc diffusion method. Results: The UV-visible spectra showed the sharp absorption peak at 278 nm. The Fourier-transform infrared spectroscopy studies revealed the role of phytochemical constituents in the leaf extract for the iron oxide nanoparticles formation.  X-ray diffraction pattern showed the presence of γ phase of Fe2O3 nanoparticles. Scanning electron microscope analysis showed the moderately spherical morphology of γ-Fe2O3 nanoparticles and Energy-dispersive X-ray peaks showed the presence of iron and oxygen in the synthesized nanoparticles.  Particle size analysis showed that the synthesized γ-Fe2O3possessed an average size of 115.9 nm. Conclusion: The synthesized γ-Fe2O3 nanoparticles have potential antioxidant and antimicrobial activity.


2019 ◽  
Vol 8 (1) ◽  
pp. 38-45 ◽  
Author(s):  
Henam Sylvia Devi ◽  
Muzaffar Ahmad Boda ◽  
Mohammad Ashraf Shah ◽  
Shazia Parveen ◽  
Abdul Hamid Wani

Abstract In this report, aqueous phase green synthesis of iron oxide nanoparticle utilizing Platanus orientalis is elucidated for the first time. The phytoconstituents of the P. orientalis leaf extract serve a dual role as reducing and capping agent during the fabrication of iron oxide nanoparticles. The role of the leaf extract in the synthesis of iron oxide has been briefly demonstrated in this work. The tailored iron oxide particles were characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray analysis, infrared spectroscopy, ultraviolet-visible spectroscopy, and dynamic light scattering technique. Nonetheless, X-ray diffraction pattern reveals the mixed phase nature of the ensuing iron oxide, i.e. α-Fe2O3 and γ-Fe2O3. The spherical oxide particles have an average diameter of 38 nm as determined from transmission electron microscopy. Infrared spectroscopy results confirmed the stabilization of iron oxide nanoparticles by the phytochemicals present in the leaf extract. Iron oxide nanoparticles show significant antifungal activity against Aspergillus niger and Mucor piriformis, employed as model fungi, but found to be more active toward M. piriformis.


Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3803 ◽  
Author(s):  
Nur Diyana Syazwani Zambri ◽  
Nurul Izza Taib ◽  
Famiza Abdul Latif ◽  
Zakiah Mohamed

The present work reports the successful synthesis of biosynthesized iron oxide nanoparticles (Fe3O4-NPs) with the use of non-toxic leaf extract of Neem (Azadirachta indica) as a reducing and stabilizing agent. The successful synthesis was confirmed by infrared spectra analysis with strong peak observed between 400–600 cm−1 that corresponds to magnetite nanoparticles characteristics. X-ray diffraction (XRD) analysis revealed that iron oxide nanoparticles were of high purity with crystalline cubic structure phases in nature. Besides, the average size of magnetite nanoparticles was observed to be 9–12 nm with mostly irregular shapes using a transmission electron microscope (TEM) and was supported by field emission scanning electron microscope (FESEM). Energy dispersive X-ray analysis shown that the elements iron (Fe) and oxygen (O) were present with atomic percentages of 33.29% and 66.71%, respectively. From the vibrating sample magnetometer (VSM) analysis it was proven that the nanoparticles exhibited superparamagnetic properties with a magnetization value of 73 emu/g and the results showed superparamagnetic behavior at room temperature, suggesting potential applications for a magnetic targeting drug delivery system.


2018 ◽  
Vol 124 (5) ◽  
Author(s):  
Nasrin Beheshtkhoo ◽  
Mohammad Amin Jadidi Kouhbanani ◽  
Amir Savardashtaki ◽  
Ali Mohammad Amani ◽  
Saeed Taghizadeh

2017 ◽  
Vol 39 (22) ◽  
pp. 2926-2936 ◽  
Author(s):  
Carole Silveira ◽  
Quelen Letícia Shimabuku ◽  
Marcela Fernandes Silva ◽  
Rosângela Bergamasco

2020 ◽  
Author(s):  
Jinning Mao ◽  
Meng Jiang ◽  
Xingliang Dai ◽  
Guodong Liu ◽  
Zhixiang Zhuang ◽  
...  

Abstract Aim: Superparamagnetic iron oxide nanoparticles (SPIONs) is a widely used biomedical material for imaging and targeting drug delivery. We synthesized SPIONs and tested their effects on the radiosensitization of glioma.Methods: Acetylated 3-aminopropyltrimethoxysilane (APTS)-coated iron oxide nanoparticles (Fe3O4 NPs) were synthesized via a one-step hydrothermal approach and the surface was chemically modified with acetic anhydride to generate surface charge-neutralized NPs. NPs were characterized by TEM and ICP-AES. Radiosensitivity of U87MG glioma cells was evaluated by MTT assay. Cell cycle and apoptosis in glioma cells were examined by flow cytometry. Results: APTS-coated Fe3O4 NPs had a spherical or quasi-spherical shape with average size of 10.5±1.1 nm. NPs had excellent biocompatibility and intracellular uptake of NPs reached the peak 24 hours after treatment. U87 cell viability decreased significantly after treatment with both X-ray and NPs compared to X-ray treatment alone. Compared to X-ray treatment alone, the percentage of cells in G2/M phase (31.83%) significantly increased in APTS-coated Fe3O4 NPs plus X-ray treated group (P<0.05). In addition, the percentage of apoptotic cells was significant higher in APTS-coated Fe3O4 NPs plus X-ray treated group than in X-ray treatment alone group (P<0.05). Conclusion: APTS-coated Fe3O4 NPs achieved excellent biocompatibility and increased radiosensitivity for glioma cells.


Sign in / Sign up

Export Citation Format

Share Document