scholarly journals Interaction of preimplantation factor with the global bovine endometrial transcriptome

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0242874
Author(s):  
Ruth E. Wonfor ◽  
Christopher J. Creevey ◽  
Manuela Natoli ◽  
Matthew Hegarty ◽  
Deborah M. Nash ◽  
...  

Preimplantation factor (PIF) is an embryo derived peptide which exerts an immune modulatory effect on human endometrium, promoting immune tolerance to the embryo whilst maintaining the immune response to invading pathogens. While bovine embryos secrete PIF, the effect on the bovine endometrium is unknown. Maternal recognition of pregnancy is driven by an embryo-maternal cross talk, however the process differs between humans and cattle. As many embryos are lost during the early part of pregnancy in cattle, a greater knowledge of factors affecting the embryo-maternal crosstalk, such as PIF, is needed to improve fertility. Therefore, for the first time, we demonstrate the effect of synthetic PIF (sPIF) on the bovine transcriptome in an ex vivo bovine endometrial tissue culture model. Explants were cultured for 30h with sPIF (100nM) or in control media. Total RNA was analysed via RNA-sequencing. As a result of sPIF treatment, 102 genes were differentially expressed compared to the control (Padj<0.1), although none by more than 2-fold. The majority of genes (78) were downregulated. Pathway analysis revealed targeting of several immune based pathways. Genes for the TNF, NF-κB, IL-17, MAPK and TLR signalling pathways were down-regulated by sPIF. However, some immune genes were demonstrated to be upregulated following sPIF treatment, including C3. Steroid biosynthesis was the only over-represented pathway with all genes upregulated. We demonstrate that sPIF can modulate the bovine endometrial transcriptome in an immune modulatory manner, like that in the human endometrium, however, the regulation of genes was much weaker than in previous human work.

2018 ◽  
Vol 8 ◽  
Author(s):  
Arjanneke F. van de Merbel ◽  
Geertje van der Horst ◽  
Maaike H. van der Mark ◽  
Janneke I. M. van Uhm ◽  
Erik J. van Gennep ◽  
...  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2113-2113
Author(s):  
Michael P. Chu ◽  
Christopher P. Venner ◽  
Irwindeep Sandhu ◽  
Eva Baigorri ◽  
Jitra Kriangkum ◽  
...  

Abstract Background Multiple myeloma (MM) remains incurable despite treatment advances. While passive immunotherapy such as anti-CD38 antibodies is highly effective, active immunotherapy may provide long-lasting remissions by virtue of triggering memory. A phase 1 nivolumab study, an antibody targeting programmed death-1 (PD1), was unable to yield any responses in multiply relapsed MM patients. Conversely, preliminary trial data of lenalidomide combined with pembrolizumab, a different anti-PD1 antibody, found significantly higher response rates. These two differing outcomes reflect our limited understanding of checkpoint inhibition and immunotherapy in MM. There is a paucity of preclinical models to guide therapeutic studies. Cell lines and xenografted murine models are incapable of exploring active immunotherapy due to a lack of microenvironment and endogenous immune cell signals. Furthermore, malignant cells responsive to drugs in 2-dimensional (2D) cultures are known to display a more resistance in 3D. We have previously demonstrated that B-cell malignancies can be accurately studied using a 3D culture system of patient bone marrow mononuclear cells (BMCs) and can better inform translational trials. Herein we describe an ex vivo, 3D tissue culture model of patient-derived MM samples to more accurately test therapeutics including checkpoint inhibition using ipilimumab, a monoclonal antibody targeting cytotoxic T-lymphocyte antigen 4 (CTLA) which is crucial in co-stimulatory signaling of effector T-cells. Methods A 3D extracellular matrix was created using matrigel in 12-well plates. BMCs were isolated from marrow aspirates of 5 MM patients at time of diagnosis and individually cultured. Each patient sample was tested for sensitivity against increasing concentrations of ipilimumab (1X, 3X, and 10X clinical doses) added into supportive medium. Plates were monitored visually by microscopy followed by harvest on day 21 using enzymatic degradation. Unique clonotypic heavy chain immunoglobulin rearrangement (IgH VDJ) from each sample was sequenced, validated and used for semi-quantitative PCR. Semi-QT PCR with clone-specific primers estimated malignant cell survival after harvest. Flow cytometry was used to define cell populations present in culture and to correlate with clonotypic PCR data. T-cell mediated activity was examined by reverse transcription of trizol-extracted, T-cell RNA after harvest. Results All samples were successfully cultured, followed for 21 days and harvested. Flow cytometry confirmed presence of T-cell subsets, B-cells, NK cells and dendritic cells before and after culture in 3D. Minimal depletion of clonotypic cells was observed at 3x clinical levels of drug. At 10x simulated clinical therapeutic levels, 3 MM samples demonstrated >90% death of clonotypic MM cells while the other 2 demonstrated 62% and 72% death, respectively, compared to untreated control cultures. The extent to which the drug diffuses into the matrigel is as yet unknown. Flow cytometry of harvested cells suggest that T-cells demonstrate a modest shift toward CD4 and CD8 effector cells. Preliminary mechanistic data from one MM sample using trizol-extracted RNA and reverse transcriptase PCR harvested at 21 days from 3D culture suggests that anti-malignant, cytotoxic T-cell effect may be driven by granzyme B expression. Expanded data from the remaining samples will be presented. Conclusions We demonstrate that an ex vivo 3D tissue culture model of MM is both feasible and informative in studying immunotherapy. By culturing unselected BMCs which include stromal cells, immune cells and malignant populations, the 3D culture more closely mimics the tumor microenvironment with both the patient's immune system present as well as stromal supportive signals. In this study, we show that in the presence of active immune effector cells, ipilimumab has activity against patient-derived MM cells. The data suggests the importance of targeted cytotoxic T-cell activation as a primary mechanism of action. We have previously studied standard MM therapeutics such as cytotoxic chemotherapy, immunomodulatory drugs, and proteasome inhibitors in the same way. Consequently, this model is well positioned to study other immunotherapies such as other checkpoint inhibitors, cellular therapy, and combinations. Further testing with therapeutics targeting PD1/PDL1, and adenosine receptors are underway. Disclosures Venner: Takeda: Honoraria; Celgene: Honoraria, Research Funding; J+J: Research Funding; Janssen: Honoraria; Amgen: Honoraria. Belch:Celgene: Honoraria; Janssen: Honoraria; Amgen: Honoraria; Takeda: Honoraria.


Author(s):  
Christian S. Thudium ◽  
Amalie Engstrom ◽  
Solveig S. Groen ◽  
Morten A. Karsdal ◽  
Anne-Christine Bay-Jensen

Author(s):  
Parviz Ranjbarvan ◽  
Fatemeh Khazaei ◽  
Farzaneh Chobsaz ◽  
Mozafar Khazaei

Introduction: Raloxifene (Ral) is the oldest SERM (selective oestrogen receptor modulators) for treatment of breast cancer and osteoporosis. Its oestrogen-modulating effects have been shown in breast and uterus. Since there is little available data on direct Ral effect on the human endometrium, the aim of present study was to investigate the Ral effect on the growth and angiogenesis of the human endometrium of healthy and endometriosis subjects in an in vitro three-dimensional (3D) tissue culture model. Material and methods: Endometrial biopsies from healthy ( n = 9) and endometriosis ( n = 7) patients (endometriotic) were taken and were cut into 1 × 1 mm fragments and implanted between two layers of fibrin jell made by fibrinogen solution (3 mg/ml in medium 199+thrombin). Tissue cultures were performed in 24-wel culture plates. Each biopsy was divided into control wells which received M199 supplemented with FBS (5%) and experimental wells which received same media containing one of raloxifene doses (0.1, 1 and 10 μM). Endometrial tissues were photographed at the beginning and the end of the study period (21 days). Tissue growth and angiogenesis were determined by a scoring system. Results: In control (0), 0.1, 1 and 10 μM Ral, the growth score of normal human endometrial tissues were 1.99, 1.72, 1.53 and 1.12 ( p = 0.02) and angiogenesis percent were 29.6%, 31.28%, 33% and 11.5%. The Growth scores of the endometriotic endometrium were 1.92, 1.82, 1.92 and 1.1 ( p = 0.008) and angiogenesis percent were 36.6%, 16.6%, 44% and 12.5% respectively. Conclusion: Raloxifene showed a different dose dependent effect on endometrial and endometriotic tissue.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ru-Fang Siao ◽  
Chia-Hsuan Lin ◽  
Li-Hsuan Chen ◽  
Liang-Chun Wang

AbstractTeleost fish skin serves as the first line of defense against pathogens. The interaction between pathogen and host skin determines the infection outcome. However, the mechanism(s) that modulate infection remain largely unknown. A proper tissue culture model that is easier to handle but can quantitatively and qualitatively monitor infection progress may shed some lights. Here, we use striped catfish (Pangasius hypophthalmus) to establish an ex vivo skin explant tissue culture model to explore host pathogen interactions. The skin explant model resembles in vivo skin in tissue morphology, integrity, and immune functionality. Inoculation of aquatic pathogen Aeromonas hydrophila in this model induces epidermal exfoliation along with epithelial cell dissociation and inflammation. We conclude that this ex vivo skin explant model could serve as a teleost skin infection model for monitoring pathogenesis under various infection conditions. The model can also potentially be translated into a platform to study prevention and treatment of aquatic infection on the skin in aquaculture applications.


Author(s):  
Mohammad S. Azimi ◽  
Michelle Lacey ◽  
Debasis Mondal ◽  
Walter L. Murfee

Sign in / Sign up

Export Citation Format

Share Document