scholarly journals Quantile regression in genomic selection for oligogenic traits in autogamous plants: A simulation study

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0243666
Author(s):  
Gabriela França Oliveira ◽  
Ana Carolina Campana Nascimento ◽  
Moysés Nascimento ◽  
Isabela de Castro Sant'Anna ◽  
Juan Vicente Romero ◽  
...  

This study assessed the efficiency of Genomic selection (GS) or genome‐wide selection (GWS), based on Regularized Quantile Regression (RQR), in the selection of genotypes to breed autogamous plant populations with oligogenic traits. To this end, simulated data of an F2 population were used, with traits with different heritability levels (0.10, 0.20 and 0.40), controlled by four genes. The generations were advanced (up to F6) at two selection intensities (10% and 20%). The genomic genetic value was computed by RQR for different quantiles (0.10, 0.50 and 0.90), and by the traditional GWS methods, specifically RR-BLUP and BLASSO. A second objective was to find the statistical methodology that allows the fastest fixation of favorable alleles. In general, the results of the RQR model were better than or equal to those of traditional GWS methodologies, achieving the fixation of favorable alleles in most of the evaluated scenarios. At a heritability level of 0.40 and a selection intensity of 10%, RQR (0.50) was the only methodology that fixed the alleles quickly, i.e., in the fourth generation. Thus, it was concluded that the application of RQR in plant breeding, to simulated autogamous plant populations with oligogenic traits, could reduce time and consequently costs, due to the reduction of selfing generations to fix alleles in the evaluated scenarios.

Agronomy ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 95 ◽  
Author(s):  
Charlotte Robertsen ◽  
Rasmus Hjortshøj ◽  
Luc Janss

Genomic Selection (GS) is a method in plant breeding to predict the genetic value of untested lines based on genome-wide marker data. The method has been widely explored with simulated data and also in real plant breeding programs. However, the optimal strategy and stage for implementation of GS in a plant-breeding program is still uncertain. The accuracy of GS has proven to be affected by the data used in the GS model, including size of the training population, relationships between individuals, marker density, and use of pedigree information. GS is commonly used to predict the additive genetic value of a line, whereas non-additive genetics are often disregarded. In this review, we provide a background knowledge on genomic prediction models used for GS and a view on important considerations concerning data used in these models. We compare within- and across-breeding cycle strategies for implementation of GS in cereal breeding and possibilities for using GS to select untested lines as parents. We further discuss the difference of estimating additive and non-additive genetic values and its usefulness to either select new parents, or new candidate varieties.


2013 ◽  
Vol 56 (1) ◽  
pp. 380-398
Author(s):  
N. Melzer ◽  
D. Wittenburg ◽  
D. Repsilber

Abstract. Phenotypic variation can partly be explained by genetic variation, such as variation in single nucleotide polymorphism (SNP) genotypes. Genomic selection methods seek to predict genetic values (breeding values) based on SNP genotypes. To develop and to optimize these methods, simulated data are often used, which follow a rather simple genotype-phenotype map. Is the conventional approach for data simulation in this field an appropriate basis to optimize such methods in view of experimental data? Here, we present an alternative approach, striving to simulate more realistic data based on a genotype-phenotype map which includes a simulated metabolome level. This level was used to simulate genetic values, implicitly including additive and non-additive genetic effects, whereas in a conventional approach additive and dominance effects were explicitly simulated and assembled to genetic values. For both simulation approaches, different scenarios regarding numbers of quantitative trait loci (QTLs) and SNPs were analysed using fastBayesB as prediction method. We observed that our alternative map showed a smaller prediction precision (at least 3.75 %) compared to the conventional approach in all investigated scenarios. The observed degree of linearity is at least 94.12 % of the conventional approach or less. Additionally, we present results for different simulated data and experimental data to allow a comparison on a purely conceptual level. Concluding, simulating a more complex genotype-phenotype map including a molecular level, allows to study processing of variation from the genetic to the phenotype level in more detail and may prepare the ground for modern methods of genomic selection.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 895
Author(s):  
Samira El Hanafi ◽  
Souad Cherkaoui ◽  
Zakaria Kehel ◽  
Ayed Al-Abdallat ◽  
Wuletaw Tadesse

Hybrid wheat breeding is one of the most promising technologies for further sustainable yield increases. However, the cleistogamous nature of wheat displays a major bottleneck for a successful hybrid breeding program. Thus, an optimized breeding strategy by developing appropriate parental lines with favorable floral trait combinations is the best way to enhance the outcrossing ability. This study, therefore, aimed to dissect the genetic basis of various floral traits using genome-wide association study (GWAS) and to assess the potential of genome-wide prediction (GP) for anther extrusion (AE), visual anther extrusion (VAE), pollen mass (PM), pollen shedding (PSH), pollen viability (PV), anther length (AL), openness of the flower (OPF), duration of floret opening (DFO) and stigma length. To this end, we employed 196 ICARDA spring bread wheat lines evaluated for three years and genotyped with 10,477 polymorphic SNP. In total, 70 significant markers were identified associated to the various assessed traits at FDR ≤ 0.05 contributing a minor to large proportion of the phenotypic variance (8–26.9%), affecting the traits either positively or negatively. GWAS revealed multi-marker-based associations among AE, VAE, PM, OPF and DFO, most likely linked markers, suggesting a potential genomic region controlling the genetic association of these complex traits. Of these markers, Kukri_rep_c103359_233 and wsnp_Ex_rep_c107911_91350930 deserve particular attention. The consistently significant markers with large effect could be useful for marker-assisted selection. Genomic selection revealed medium to high prediction accuracy ranging between 52% and 92% for the assessed traits with the least and maximum value observed for stigma length and visual anther extrusion, respectively. This indicates the feasibility to implement genomic selection to predict the performance of hybrid floral traits with high reliability.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ruidong Xiang ◽  
Iona M. MacLeod ◽  
Hans D. Daetwyler ◽  
Gerben de Jong ◽  
Erin O’Connor ◽  
...  

AbstractThe difficulty in finding causative mutations has hampered their use in genomic prediction. Here, we present a methodology to fine-map potentially causal variants genome-wide by integrating the functional, evolutionary and pleiotropic information of variants using GWAS, variant clustering and Bayesian mixture models. Our analysis of 17 million sequence variants in 44,000+ Australian dairy cattle for 34 traits suggests, on average, one pleiotropic QTL existing in each 50 kb chromosome-segment. We selected a set of 80k variants representing potentially causal variants within each chromosome segment to develop a bovine XT-50K genotyping array. The custom array contains many pleiotropic variants with biological functions, including splicing QTLs and variants at conserved sites across 100 vertebrate species. This biology-informed custom array outperformed the standard array in predicting genetic value of multiple traits across populations in independent datasets of 90,000+ dairy cattle from the USA, Australia and New Zealand.


1999 ◽  
Vol 17 (S1) ◽  
pp. S621-S626
Author(s):  
Li Hsu ◽  
Corinne Aragaki ◽  
Filemon Quiaoit ◽  
Xiangjing Wang ◽  
Xiubin Xu ◽  
...  

2020 ◽  
Author(s):  
Hui Tian ◽  
Andrew Yim ◽  
David P. Newton

We show that quantile regression is better than ordinary-least-squares (OLS) regression in forecasting profitability for a range of profitability measures following the conventional setup of the accounting literature, including the mean absolute forecast error (MAFE) evaluation criterion. Moreover, we perform both a simulated-data and an archival-data analysis to examine how the forecasting performance of quantile regression against OLS changes with the shape of the profitability distribution. Considering the MAFE and mean squared forecast error (MSFE) criteria together, we see that the quantile regression is more accurate relative to OLS when the profitability to be forecast has a heavier-tailed distribution. In addition, the asymmetry of the profitability distribution has either a U-shape or an inverted-U-shape effect on the forecasting accuracy of quantile regression. An application of the distributional shape analysis framework to cash flow forecasting demonstrates the usefulness of the framework beyond profitability forecasting, providing additional empirical evidence on the positive effect of tail-heaviness and supporting the notion of an inverted-U-shape effect of asymmetry. This paper was accepted by Shiva Rajgopal, accounting.


2022 ◽  
Author(s):  
Lars Wienbrandt ◽  
David Ellinghaus

Background: Reference-based phasing and genotype imputation algorithms have been developed with sublinear theoretical runtime behaviour, but runtimes are still high in practice when large genome-wide reference datasets are used. Methods: We developed EagleImp, a software with algorithmic and technical improvements and new features for accurate and accelerated phasing and imputation in a single tool. Results: We compared accuracy and runtime of EagleImp with Eagle2, PBWT and prominent imputation servers using whole-genome sequencing data from the 1000 Genomes Project, the Haplotype Reference Consortium and simulated data with more than 1 million reference genomes. EagleImp is 2 to 10 times faster (depending on the single or multiprocessor configuration selected) than Eagle2/PBWT, with the same or better phasing and imputation quality in all tested scenarios. For common variants investigated in typical GWAS studies, EagleImp provides same or higher imputation accuracy than the Sanger Imputation Service, Michigan Imputation Server and the newly developed TOPMed Imputation Server, despite larger (not publicly available) reference panels. It has many new features, including automated chromosome splitting and memory management at runtime to avoid job aborts, fast reading and writing of large files, and various user-configurable algorithm and output options. Conclusions: Due to the technical optimisations, EagleImp can perform fast and accurate reference-based phasing and imputation for future very large reference panels with more than 1 million genomes. EagleImp is freely available for download from https://github.com/ikmb/eagleimp.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiujin Li ◽  
Hailiang Song ◽  
Zhe Zhang ◽  
Yunmao Huang ◽  
Qin Zhang ◽  
...  

Abstract Background With the emphasis on analysing genotype-by-environment interactions within the framework of genomic selection and genome-wide association analysis, there is an increasing demand for reliable tools that can be used to simulate large-scale genomic data in order to assess related approaches. Results We proposed a theory to simulate large-scale genomic data on genotype-by-environment interactions and added this new function to our developed tool GPOPSIM. Additionally, a simulated threshold trait with large-scale genomic data was also added. The validation of the simulated data indicated that GPOSPIM2.0 is an efficient tool for mimicking the phenotypic data of quantitative traits, threshold traits, and genetically correlated traits with large-scale genomic data while taking genotype-by-environment interactions into account. Conclusions This tool is useful for assessing genotype-by-environment interactions and threshold traits methods.


Sign in / Sign up

Export Citation Format

Share Document