scholarly journals Co-expression analysis identifies neuro-inflammation as a driver of sensory neuron aging in Aplysia californica

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252647
Author(s):  
N. S. Kron ◽  
L. A. Fieber

Aging of the nervous system is typified by depressed metabolism, compromised proteostasis, and increased inflammation that results in cognitive impairment. Differential expression analysis is a popular technique for exploring the molecular underpinnings of neural aging, but technical drawbacks of the methodology often obscure larger expression patterns. Co-expression analysis offers a robust alternative that allows for identification of networks of genes and their putative central regulators. In an effort to expand upon previous work exploring neural aging in the marine model Aplysia californica, we used weighted gene correlation network analysis to identify co-expression networks in a targeted set of aging sensory neurons in these animals. We identified twelve modules, six of which were strongly positively or negatively associated with aging. Kyoto Encyclopedia of Genes analysis and investigation of central module transcripts identified signatures of metabolic impairment, increased reactive oxygen species, compromised proteostasis, disrupted signaling, and increased inflammation. Although modules with immune character were identified, there was no correlation between genes in Aplysia that increased in expression with aging and the orthologous genes in oyster displaying long-term increases in expression after a virus-like challenge. This suggests anti-viral response is not a driver of Aplysia sensory neuron aging.

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Nelly F Mostajo ◽  
Marie Lataretu ◽  
Sebastian Krautwurst ◽  
Florian Mock ◽  
Daniel Desirò ◽  
...  

Abstract Although bats are increasingly becoming the focus of scientific studies due to their unique properties, these exceptional animals are still among the least studied mammals. Assembly quality and completeness of bat genomes vary a lot and especially non-coding RNA (ncRNA) annotations are incomplete or simply missing. Accordingly, standard bioinformatics pipelines for gene expression analysis often ignore ncRNAs such as microRNAs or long antisense RNAs. The main cause of this problem is the use of incomplete genome annotations. We present a complete screening for ncRNAs within 16 bat genomes. NcRNAs affect a remarkable variety of vital biological functions, including gene expression regulation, RNA processing, RNA interference and, as recently described, regulatory processes in viral infections. Within all investigated bat assemblies, we annotated 667 ncRNA families including 162 snoRNAs and 193 miRNAs as well as rRNAs, tRNAs, several snRNAs and lncRNAs, and other structural ncRNA elements. We validated our ncRNA candidates by six RNA-Seq data sets and show significant expression patterns that have never been described before in a bat species on such a large scale. Our annotations will be usable as a resource (rna.uni-jena.de/supplements/bats) for deeper studying of bat evolution, ncRNAs repertoire, gene expression and regulation, ecology and important host–virus interactions.


2005 ◽  
Vol 94 (3) ◽  
pp. 2218-2230 ◽  
Author(s):  
Xavier Gasull ◽  
Xiaogang Liao ◽  
Michael F. Dulin ◽  
Cynthia Phelps ◽  
Edgar T. Walters

Peripheral axotomy induces long-term hyperexcitability (LTH) of centrally located sensory neuron (SN) somata in diverse species. In mammals this LTH can promote spontaneous activity of pain-related SNs, and such activity may contribute to neuropathic pain and hyperalgesia. However, few axotomized SN somata begin to fire spontaneously in any species, and why so many SNs display soma LTH after axotomy remains a mystery. Is soma LTH a side effect of injury with pathological but no adaptive consequences, or was this response selected during evolution for particular functions? A hypothesis for one function of soma LTH in nociceptive SNs in Aplysia californica is proposed: after peripheral injury that produces partial axotomy of some SNs, compensation for sensory deficits and protective sensitization are achieved by facilitating afterdischarge near the soma, which amplifies sensory input from injured peripheral fields. Four predictions of this hypothesis were confirmed in SNs that innervate the tail. First, LTH of SN somata was induced by a relatively natural axotomizing event—a small cut across part of the tail in the absence of anesthesia. Second, soma LTH was selectively expressed in SNs having axons in cut or crushed nerves rather than nearby, uninjured nerves. Third, after several weeks soma LTH began to reverse when functional recovery of the interrupted afferent pathway was shown by reestablishment of a centrally mediated siphon reflex. Fourth, axotomized SNs developed central afterdischarge that amplified sensory discharge coming from the periphery, and the afterdepolarization underlying this afterdischarge was enhanced by previous axotomy.


BMC Genomics ◽  
2020 ◽  
Vol 21 (S11) ◽  
Author(s):  
Dan Zhang ◽  
Yan Guo ◽  
Ni Xie

Abstract Background Abnormal metabolic pathways have been considered as one of the hallmarks of cancer. While numerous metabolic pathways have been studied in various cancers, the direct link between metabolic pathway gene expression and cancer prognosis has not been established. Results Using two recently developed bioinformatics analysis methods, we evaluated the prognosis potential of metabolic pathway expression and tumor-vs-normal dysregulations for up to 29 metabolic pathways in 33 cancer types. Results show that increased metabolic gene expression within tumors corresponds to poor cancer prognosis. Meta differential co-expression analysis identified four metabolic pathways with significant global co-expression network disturbance between tumor and normal samples. Differential expression analysis of metabolic pathways also demonstrated strong gene expression disturbance between paired tumor and normal samples. Conclusion Taken together, these results strongly suggested that metabolic pathway gene expressions are disturbed after tumorigenesis. Within tumors, many metabolic pathways are upregulated for tumor cells to activate corresponding metabolisms to sustain the required energy for cell division.


2021 ◽  
Author(s):  
Lis Arend ◽  
Judith Bernett ◽  
Quirin Manz ◽  
Melissa Klug ◽  
Olga Lazareva ◽  
...  

Cytometry techniques are widely used to discover cellular characteristics at single-cell resolution. Many data analysis methods for cytometry data focus solely on identifying subpopulations via clustering and testing for differential cell abundance. For differential expression analysis of markers between conditions, only few tools exist. These tools either reduce the data distribution to medians, discarding valuable information, or have underlying assumptions that may not hold for all expression patterns. Here, we systematically evaluated existing and novel approaches for differential expression analysis on real and simulated CyTOF data. We found that methods using median marker expressions compute fast and reliable results when the data is not strongly zero-inflated. Methods using all data detect changes in strongly zero-inflated markers, but partially suffer from overprediction or cannot handle big datasets. We present a new method, CyEMD, based on calculating the Earth Mover's Distance between expression distributions that can handle strong zero-inflation without being too sensitive. Additionally, we developed CYANUS, a user-friendly R Shiny App allowing the user to analyze cytometry data with state-of-the-art tools, including well-performing methods from our comparison. A public web interface is available at https://exbio.wzw.tum.de/cyanus/.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Martin Bilbao-Arribas ◽  
Endika Varela-Martínez ◽  
Naiara Abendaño ◽  
Damián de Andrés ◽  
Lluís Luján ◽  
...  

Abstract Background Long non-coding RNAs (lncRNAs) are involved in several immune processes, including the immune response to vaccination, but most of them remain uncharacterised in livestock species. The mechanism of action of aluminium adjuvants as vaccine components is neither not fully understood. Results We built a transcriptome from sheep PBMCs RNA-seq data in order to identify unannotated lncRNAs and analysed their expression patterns along protein coding genes. We found 2284 novel lncRNAs and assessed their conservation in terms of sequence and synteny. Differential expression analysis performed between animals inoculated with commercial vaccines or aluminium adjuvant alone and the co-expression analysis revealed lncRNAs related to the immune response to vaccines and adjuvants. A group of co-expressed genes enriched in cytokine signalling and production highlighted the differences between different treatments. A number of differentially expressed lncRNAs were correlated with a divergently located protein-coding gene, such as the OSM cytokine. Other lncRNAs were predicted to act as sponges of miRNAs involved in immune response regulation. Conclusions This work enlarges the lncRNA catalogue in sheep and puts an accent on their involvement in the immune response to repetitive vaccination, providing a basis for further characterisation of the non-coding sheep transcriptome within different immune cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cheng Song ◽  
Xiaoli Li ◽  
Bin Jia ◽  
Li Liu ◽  
Jinmei Ou ◽  
...  

Peucedanum praeruptorum Dunn is a perennial and one-off flowering plant of the Peucedanum genus in Umbelliferae. The cultivated P. praeruptorum Dunn usually grows nutritionally in the first year and then moves into the reproductive growth in the second year. The lignification of the roots caused by bolting leads to the quality decline of crude materials. Since most of the previous studies have dealt with coumarin biosynthesis and identification of functional genes in P. praeruptorum, the scientific connotation of the inability that the bolted P. praeruptorum cannot be used medically is still unclear. Here, we employed a transcriptome sequencing combined with coexpression analysis to unearth the regulation mechanism of key genes related to coumarin synthesis in pre- and postbolting period, and to explore the mechanisms underlying the effects of bolting on the formation and transport of coumarins between the annual and biennial plants. Six cDNA libraries were constructed, and the transcripts were sequenced and assembled by Illumina Hiseq platform. A total of 336,505 unigenes were obtained from 824,129 non-redundant spliced transcripts. Unigenes (114,488) were annotated to the NCBI nr database, 119,017 and 10,475 unigenes were aligned to Gene Ontology (GO) functional groups and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, respectively. Differential expression analysis screened out a series of upregulated and downregulated genes related to the phenylpropanoid pathway. The heatmap clustering showed that the similar expression patterns were both observed in groups C vs. D and groups C vs. F. The WGCNA-based coexpression was performed to elucidate the module and trait relationship to unearth important genes related to the bolting process. Seven pivotal modules on the KEGG functional annotations suggested these genes were mainly enriched in the process of plant–pathogen interaction, plant hormone signal transduction, MAPK signaling pathway, α-linolenic acid metabolism, circadian rhythm, and phenylpropanoid pathway. Further analysis provided clues that the key genes of the phenylpropanoid pathway, the ABC transporters, the apoptosis-related and circadian rhythm regulatory genes may play pivotal roles in regulating bolting signaling, biosynthesis, and transportation of coumarins.


Biology ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Valentina Valenzuela-Muñoz ◽  
Cristian Gallardo-Escárate ◽  
Bárbara P. Benavente ◽  
Diego Valenzuela-Miranda ◽  
Gustavo Núñez-Acuña ◽  
...  

The growing amount of genome information and transcriptomes data available allows for a better understanding of biological processes. However, analysis of complex transcriptomic experimental designs involving different conditions, tissues, or times is relevant. This study proposes a novel approach to analyze complex data sets combining transcriptomes and miRNAs at the chromosome-level genome. Atlantic salmon smolts were transferred to seawater under two strategies: (i) fish group exposed to gradual salinity changes (GSC) and (ii) fish group exposed to a salinity shock (SS). Gills, intestine, and head kidney samples were used for total RNA extraction, followed by mRNA and small RNA illumina sequencing. Different expression patterns among the tissues and treatments were observed through a whole-genome transcriptomic approach. Chromosome regions highly expressed between experimental conditions included a great abundance of transposable elements. In addition, differential expression analysis showed a greater number of transcripts modulated in response to SS in gills and head kidney. miRNA expression analysis suggested a small number of miRNAs involved in the smoltification process. However, target analysis of these miRNAs showed a regulatory role in growth, stress response, and immunity. This study is the first to evidence the interplaying among mRNAs and miRNAs and the structural relationship at the genome level during Atlantic salmon smoltification.


2019 ◽  
Author(s):  
Nelly Mostajo Berrospi ◽  
Marie Lataretu ◽  
Sebastian Krautwurst ◽  
Florian Mock ◽  
Daniel Desirò ◽  
...  

ABSTRACTAlthough bats are increasingly becoming the focus of scientific studies due to their unique properties, these exceptional animals are still among the least studied mammals. Assembly quality and completeness of bat genomes vary a lot and especially non-coding RNA (ncRNA) annotations are incomplete or simply missing. Accordingly, standard bioinformatics pipelines for gene expression analysis often ignore ncRNAs such as microRNAs or long antisense RNAs. The main cause of this problem is the use of incomplete genome annotations. We present a complete screening for ncRNAs within 16 bat genomes. NcRNAs affect a remarkable variety of vital biological functions, including gene expression regulation, RNA processing, RNA interference and, as recently described, regulatory processes in viral infections. Within all investigated bat assemblies we annotated 667 ncRNA families including 162 snoRNAs and 193 miRNAs as well as rRNAs, tRNAs, several snRNAs and IncRNAs, and other structural ncRNA elements. We validated our ncRNA candidates by six RNA-Seq data sets and show significant expression patterns that have never been described before in a bat species on such a large scale. Our annotations will be usable as a resource (Electronic Supplement) for deeper studying of bat evolution, ncRNAs repertoire, gene expression and regulation, ecology, and important host-virus interactions.Supplementary informationis available at rna.uni-jena.de/supplements/bats, the Open Science Framework (doi.org/10.17605/OSF.IO/4CMDN), and GitHub (github.com/rnajena/bats_ncrna).


2020 ◽  
Author(s):  
Robert Calin-Jageman ◽  
Irina Calin-Jageman ◽  
Tania Rosiles ◽  
Melissa Nguyen ◽  
Annette Garcia ◽  
...  

[[This is a Stage 2 Registered Report manuscript now accepted for publication at eNeuro. The accepted Stage 1 manuscript is posted here: https://psyarxiv.com/s7dft, and the pre-registration for the project is available here (https://osf.io/fqh8j, 9/11/2019). A link to the final Stage 2 manuscript will be posted after peer review and publication.]] There is fundamental debate about the nature of forgetting: some have argued that it represents the decay of the memory trace, others that the memory trace persists but becomes inaccessible due to retrieval failure. These different accounts of forgetting lead to different predictions about savings memory, the rapid re-learning of seemingly forgotten information. If forgetting is due to decay, then savings requires re-encoding and should thus involve the same mechanisms as initial learning. If forgetting is due to retrieval failure, then savings should be mechanistically distinct from encoding. In this registered report we conducted a pre-registered and rigorous test between these accounts of forgetting. Specifically, we used microarray to characterize the transcriptional correlates of a new memory (1 day after training), a forgotten memory (8 days after training), and a savings memory (8 days after training but with a reminder on day 7 to evoke a long-term savings memory) for sensitization in Aplysia californica (n = 8 samples/group). We found that the re-activation of sensitization during savings does not involve a substantial transcriptional response. Thus, savings is transcriptionally distinct relative to a newer (1-day old) memory, with no co-regulated transcripts, negligible similarity in regulation-ranked ordering of transcripts, and a negligible correlation in training-induced changes in gene expression (r = .04 95% CI [-.12, .20]). Overall, our results suggest that forgetting of sensitization memory represents retrieval failure.


2020 ◽  
Author(s):  
Robert Calin-Jageman ◽  
Irina Calin-Jageman ◽  
Tania Rosiles ◽  
Melissa Nguyen ◽  
Annette Garcia ◽  
...  

[[This is a Stage 1 Registered Report manuscript. The project was submitted for review to eNeuro. Upon revision and acceptance, this version of the manuscript was pre-registered on the OSF (9/11/2019, https://osf.io/fqh8j) (but due to an oversight not posted as a preprint until July 2020). A Stage 2 manuscript is now posted as a pre-print (https://psyarxiv.com/h59jv) and is under review at eNeuro. A link to the final Stage 2 manuscript will be added when available.]]There is fundamental debate about the nature of forgetting: some have argued that it represents the decay of the memory trace, others that the memory trace persists but becomes inaccessible due to retrieval failure. These different accounts of forgetting make different predictions about savings memory, the rapid re-learning of seemingly forgotten information. If forgetting is due to decay then savings requires re-encoding and should thus involve the same mechanisms as initial learning. If forgetting is due to retrieval-failure then savings should be mechanistically distinct from encoding. In this registered report we conducted a pre-registered and rigorous test between these accounts of forgetting. Specifically, we used microarray to characterize the transcriptional correlates of a new memory (1 day from training), a forgotten memory (8 days from training), and a savings memory (8 days from training but with a reminder on day 7 to evoke a long-term savings memory) for sensitization in Aplysia californica (n = 8 samples/group). We find that the transcriptional correlates of savings are [highly similar / somewhat similar / unique] relative to new (1-day-old) memories. Specifically, savings memory and a new memory share [X] of [Y] regulated transcripts, show [strong / moderate / weak] similarity in sets of regulated transcripts, and show [r] correlation in regulated gene expression, which is [substantially / somewhat / not at all] stronger than at forgetting. Overall, our results suggest that forgetting represents [decay / retrieval-failure / mixed mechanisms].


Sign in / Sign up

Export Citation Format

Share Document