scholarly journals Prognostic value and co-expression patterns of metabolic pathways in cancers

BMC Genomics ◽  
2020 ◽  
Vol 21 (S11) ◽  
Author(s):  
Dan Zhang ◽  
Yan Guo ◽  
Ni Xie

Abstract Background Abnormal metabolic pathways have been considered as one of the hallmarks of cancer. While numerous metabolic pathways have been studied in various cancers, the direct link between metabolic pathway gene expression and cancer prognosis has not been established. Results Using two recently developed bioinformatics analysis methods, we evaluated the prognosis potential of metabolic pathway expression and tumor-vs-normal dysregulations for up to 29 metabolic pathways in 33 cancer types. Results show that increased metabolic gene expression within tumors corresponds to poor cancer prognosis. Meta differential co-expression analysis identified four metabolic pathways with significant global co-expression network disturbance between tumor and normal samples. Differential expression analysis of metabolic pathways also demonstrated strong gene expression disturbance between paired tumor and normal samples. Conclusion Taken together, these results strongly suggested that metabolic pathway gene expressions are disturbed after tumorigenesis. Within tumors, many metabolic pathways are upregulated for tumor cells to activate corresponding metabolisms to sustain the required energy for cell division.

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Nelly F Mostajo ◽  
Marie Lataretu ◽  
Sebastian Krautwurst ◽  
Florian Mock ◽  
Daniel Desirò ◽  
...  

Abstract Although bats are increasingly becoming the focus of scientific studies due to their unique properties, these exceptional animals are still among the least studied mammals. Assembly quality and completeness of bat genomes vary a lot and especially non-coding RNA (ncRNA) annotations are incomplete or simply missing. Accordingly, standard bioinformatics pipelines for gene expression analysis often ignore ncRNAs such as microRNAs or long antisense RNAs. The main cause of this problem is the use of incomplete genome annotations. We present a complete screening for ncRNAs within 16 bat genomes. NcRNAs affect a remarkable variety of vital biological functions, including gene expression regulation, RNA processing, RNA interference and, as recently described, regulatory processes in viral infections. Within all investigated bat assemblies, we annotated 667 ncRNA families including 162 snoRNAs and 193 miRNAs as well as rRNAs, tRNAs, several snRNAs and lncRNAs, and other structural ncRNA elements. We validated our ncRNA candidates by six RNA-Seq data sets and show significant expression patterns that have never been described before in a bat species on such a large scale. Our annotations will be usable as a resource (rna.uni-jena.de/supplements/bats) for deeper studying of bat evolution, ncRNAs repertoire, gene expression and regulation, ecology and important host–virus interactions.


Author(s):  
Han Liang ◽  
Cong Lin ◽  
Yong Hou ◽  
Fuqiang Li ◽  
Kui Wu

AbstractDysregulated gene expression can develop as a consequence of uncontrolled alterations of tumor cells. Analysis of these abnormal alterations will improve our understanding of the tumor development and reveal the corresponding clinical associations. It is well known that multiple genetic abnormalities could be observed in the same tumor, however, the interactions between those abnormal events are rarely analyzed. To address this problem, we constructed a novel gene expression correlation network by integrating the transcriptomes of 5,001 cancer patients from 22 cancer types. We investigated how the change of associated expression pattern (AEP), which describe certain associations between gene expression, could affect the cancer patient’s prognosis. Consequently, we identified an AEP composed of mitosis-related gene expressions, which is significantly correlated with overall survival in most cancer types. In particular, the AEPs could present the association between gene expressions and show distinct effects on prognosis prediction for cancer patients, suggesting that AEP analysis is indispensable to uncover the complex interactions of abnormal gene expressions in tumor development.


2019 ◽  
Author(s):  
Nelly Mostajo Berrospi ◽  
Marie Lataretu ◽  
Sebastian Krautwurst ◽  
Florian Mock ◽  
Daniel Desirò ◽  
...  

ABSTRACTAlthough bats are increasingly becoming the focus of scientific studies due to their unique properties, these exceptional animals are still among the least studied mammals. Assembly quality and completeness of bat genomes vary a lot and especially non-coding RNA (ncRNA) annotations are incomplete or simply missing. Accordingly, standard bioinformatics pipelines for gene expression analysis often ignore ncRNAs such as microRNAs or long antisense RNAs. The main cause of this problem is the use of incomplete genome annotations. We present a complete screening for ncRNAs within 16 bat genomes. NcRNAs affect a remarkable variety of vital biological functions, including gene expression regulation, RNA processing, RNA interference and, as recently described, regulatory processes in viral infections. Within all investigated bat assemblies we annotated 667 ncRNA families including 162 snoRNAs and 193 miRNAs as well as rRNAs, tRNAs, several snRNAs and IncRNAs, and other structural ncRNA elements. We validated our ncRNA candidates by six RNA-Seq data sets and show significant expression patterns that have never been described before in a bat species on such a large scale. Our annotations will be usable as a resource (Electronic Supplement) for deeper studying of bat evolution, ncRNAs repertoire, gene expression and regulation, ecology, and important host-virus interactions.Supplementary informationis available at rna.uni-jena.de/supplements/bats, the Open Science Framework (doi.org/10.17605/OSF.IO/4CMDN), and GitHub (github.com/rnajena/bats_ncrna).


2008 ◽  
Vol 5 (2) ◽  
Author(s):  
Li Teng ◽  
Laiwan Chan

SummaryTraditional analysis of gene expression profiles use clustering to find groups of coexpressed genes which have similar expression patterns. However clustering is time consuming and could be diffcult for very large scale dataset. We proposed the idea of Discovering Distinct Patterns (DDP) in gene expression profiles. Since patterns showing by the gene expressions reveal their regulate mechanisms. It is significant to find all different patterns existing in the dataset when there is little prior knowledge. It is also a helpful start before taking on further analysis. We propose an algorithm for DDP by iteratively picking out pairs of gene expression patterns which have the largest dissimilarities. This method can also be used as preprocessing to initialize centers for clustering methods, like K-means. Experiments on both synthetic dataset and real gene expression datasets show our method is very effective in finding distinct patterns which have gene functional significance and is also effcient.


2020 ◽  
Author(s):  
Ammar Zaghlool ◽  
Adnan Niazi ◽  
Åsa K. Björklund ◽  
Jakub Orzechowski Westholm ◽  
Adam Ameur ◽  
...  

AbstractTranscriptome analysis has mainly relied on analyzing RNA sequencing data from whole cells, overlooking the impact of subcellular RNA localization and its influence on our understanding of gene function, and interpretation of gene expression signatures in cells. Here, we performed a comprehensive analysis of cytosolic and nuclear transcriptomes in human fetal and adult brain samples. We show significant differences in RNA expression for protein-coding and lncRNA genes between cytosol and nucleus. Transcripts displaying differential subcellular localization belong to particular functional categories and display tissue-specific localization patterns. We also show that transcripts encoding the nuclear-encoded mitochondrial proteins are significantly enriched in the cytosol compared to the rest of protein-coding genes. Further investigation of the use of the cytosolic or the nuclear transcriptome for differential gene expression analysis indicates important differences in results depending on the cellular compartment. These differences were manifested at the level of transcript types and the number of differentially expressed genes. Our data provide a resource of RNA subcellular localization in the human brain and highlight differences in using the cytosolic or the nuclear transcriptomes for differential expression analysis.


2021 ◽  
Vol 27 (Supplement_1) ◽  
pp. S9-S10
Author(s):  
Brooklyn McGrew ◽  
Aman Shrivastava ◽  
Philip Fernandes ◽  
Lubaina Ehsan ◽  
Yash Sharma ◽  
...  

Abstract Background Candidate markers for Crohn’s Disease (CD) may be identified via gene expression-based construction of metabolic networks (MN). These can computationally describe gene-protein-reaction associations for entire tissues and also predict the flux of reactions (rate of turnover of specific molecules via a metabolic pathway). Recon3D is the most comprehensive human MN to date. We used publicly available CD transcriptomic data along with Recon3D to identify metabolites as potential diagnostic and prognostic biomarkers. Methods Terminal ileal gene expression profiles (36,372 genes; 218 CD. 42 controls) from the RISK cohort (Risk Stratification and Identification of Immunogenetic and Microbial Markers of Rapid Disease Progression in Children with Crohn’s Disease) and their transcriptomic abundances were used. Recon3D was pruned to only include RISK dataset transcripts which determined metabolic reaction linkage with transcriptionally active genes. Flux balance analysis (FBA) was then run using RiPTiDe with context specific transcriptomic data to further constrain genes (Figure 1). RiPTiDe was independently run on transcriptomic data from both CD and controls. From the pruned and constricted MN obtained, reactions were extracted for further analysis. Results After applying the necessary constraints to modify Recon3D, 527 CD and 537 control reactions were obtained. Reaction comparison with a publicly available list of healthy small intestinal epithelial reactions (n=1282) showed an overlap of 80 CD and 84 control reactions. These were then further grouped based on their metabolic pathways. RiPTiDe identified context specific metabolic pathway activity without supervision and the percentage of forward, backward, and balanced reactions for each metabolic pathway (Figure 2). The metabolite concentrations in the small intestine was altered among CD patients. Notably, the citric acid cycle and malate-aspartate shuttle were affected, highlighting changes in mitochondrial metabolic pathways. This is illustrated by changes in the number of reactions at equilibrium between CD and control. Conclusions The results are relevant as cytosolic acetyl-CoA is needed for fatty acid synthesis and is obtained by removing citrate from the citric acid cycle. An intermediate removal from the cycle has significant cataplerotic effects. The malate-aspartate shuttle also allows electrons to move across the impermeable membrane in the mitochondria (fatty acid synthesis location). These findings are reported by previously published studies where gene expression for fatty acid synthesis is altered in CD patients along with mitochondrial metabolic pathway changes, resulting in altered cell homeostasis. In-depth analysis is currently underway with our work supporting the utility of potential metabolic biomarkers for CD diagnosis, management and improved care.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Elisa C Maruko ◽  
Hao Xu ◽  
Sushma Kaul ◽  
Brian J Capaldo ◽  
Nathalie Pamir ◽  
...  

Atherosclerosis is a disease of both lipids and inflammatory immune cells. More specifically, elevated plasma levels of low-density lipoproteins (LDL) leads to migration of circulating monocytes into the artery wall. Lipid loaded monocyte cells subsequently proliferate in the arterial walls becoming macrophage foam cells; a hallmark of atherosclerotic lesions. A proposed mechanism of the protective effects of high-density lipoprotein (HDL) is apolipoprotein A-I (apo A-I) acting as a mediator of cholesterol efflux and subsequent foam cell regression. To better understand the biological changes stimulated by apo A-I treatment, differential expression analysis of microarray data was performed on spleen cells from apo A-I treated mice. LDL receptor null (LDLr -/- ) and LDL receptor and apo A-I null (LDLr -/- , apoA-I -/- ) mice were fed a western diet consisting of 0.2% cholesterol and 42% of calories as fat for 12 weeks. After 6 weeks of diet, a subset of mice for each genotype was subcutaneously injected with 200 micrograms of apo A-I 3 times a week for the remaining 6 weeks. The control group mice were subcutaneously injected with 200 micrograms of saline or BSA. Spleen cell RNA was isolated, purified, and analyzed for differential expression analysis using Illumina BeadArray Microarray Technology Analysis. Individual gene expression analysis for LDLr -/- , apoA-I -/- apo A-I treated mice showed 281 significantly differentially expressed genes compared to BSA treated mice. LDLr -/- A-I treated mice had 1502. Of the significant genes, 189 intersected across both genotypes. LDLr -/- , apoA-I -/- A-I mice showed 73 up-regulated and 116 down-regulated genes. Similarly, LDLr -/- A-I mice had 71 up-regulated and 118 down-regulated. One-directional Gene Set Enrichment Analysis (GSEA) of LDLr -/- , apoA-I -/- A-I mice revealed 49 significant pathways while a total of 63 were found for LDLr -/- . Of these pathways, 21 were up-regulated and 13 were down-regulated in both genotypes. Eight of the top 10 most significant up-regulated pathways in both genotypes were immune cell related. Their functions involve receptor, adhesion, and chemokine signaling. Overall, preliminary analysis suggests A-I treatment induces similar gene expression changes across different genotypes.


Author(s):  
Crescenzio Gallo

The possible applications of modeling and simulation in the field of bioinformatics are very extensive, ranging from understanding basic metabolic paths to exploring genetic variability. Experimental results carried out with DNA microarrays allow researchers to measure expression levels for thousands of genes simultaneously, across different conditions and over time. A key step in the analysis of gene expression data is the detection of groups of genes that manifest similar expression patterns. In this chapter, the authors examine various methods for analyzing gene expression data, addressing the important topics of (1) selecting the most differentially expressed genes, (2) grouping them by means of their relationships, and (3) classifying samples based on gene expressions.


Author(s):  
Jieping Ye ◽  
Ravi Janardan ◽  
Sudhir Kumar

Understanding the roles of genes and their interactions is one of the central challenges in genome research. One popular approach is based on the analysis of microarray gene expression data (Golub et al., 1999; White, et al., 1999; Oshlack et al., 2007). By their very nature, these data often do not capture spatial patterns of individual gene expressions, which is accomplished by direct visualization of the presence or absence of gene products (mRNA or protein) (e.g., Tomancak et al., 2002; Christiansen et al., 2006). For instance, the gene expression pattern images of a Drosophila melanogaster embryo capture the spatial and temporal distribution of gene expression patterns at a given developmental stage (Bownes, 1975; Tsai et al., 1998; Myasnikova et al., 2002; Harmon et al., 2007). The identification of genes showing spatial overlaps in their expression patterns is fundamentally important to formulating and testing gene interaction hypotheses (Kumar et al., 2002; Tomancak et al., 2002; Gurunathan et al., 2004; Peng & Myers, 2004; Pan et al., 2006). Recent high-throughput experiments of Drosophila have produced over fifty thousand images (http://www. fruitfly.org/cgi-bin/ex/insitu.pl). It is thus desirable to design efficient computational approaches that can automatically retrieve images with overlapping expression patterns. There are two primary ways of accomplishing this task. In one approach, gene expression patterns are described using a controlled vocabulary, and images containing overlapping patterns are found based on the similarity of textual annotations. In the second approach, the most similar expression patterns are identified by a direct comparison of image content, emulating the visual inspection carried out by biologists [(Kumar et al., 2002); see also www.flyexpress.net]. The direct comparison of image content is expected to be complementary to, and more powerful than, the controlled vocabulary approach, because it is unlikely that all attributes of an expression pattern can be completely captured via textual descriptions. Hence, to facilitate the efficient and widespread use of such datasets, there is a significant need for sophisticated, high-performance, informatics-based solutions for the analysis of large collections of biological images.


2019 ◽  
Vol 20 (13) ◽  
pp. 3229 ◽  
Author(s):  
Moody ◽  
Wang ◽  
Jung ◽  
Chen ◽  
Pan

Calorie-dense high-fat diets (HF) are associated with detrimental health outcomes, including obesity, cardiovascular disease, and diabetes. Both pre- and post-natal HF diets have been hypothesized to negatively impact long-term metabolic health via epigenetic mechanisms. To understand how the timing of HF diet intake impacts DNA methylation and metabolism, male Sprague–Dawley rats were exposed to either maternal HF (MHF) or post-weaning HF diet (PHF). At post-natal week 12, PHF rats had similar body weights but greater hepatic lipid accumulation compared to the MHF rats. Genome-wide DNA methylation was evaluated, and analysis revealed 1744 differentially methylation regions (DMRs) between the groups with the majority of the DMR located outside of gene-coding regions. Within differentially methylated genes (DMGs), intragenic DNA methylation closer to the transcription start site was associated with lower gene expression, whereas DNA methylation further downstream was positively correlated with gene expression. The insulin and phosphatidylinositol (PI) signaling pathways were enriched with 25 DMRs that were associated with 20 DMGs, including PI3 kinase (Pi3k), pyruvate kinase (Pklr), and phosphodiesterase 3 (Pde3). Together, these results suggest that the timing of HF diet intake determines DNA methylation and gene expression patterns in hepatic metabolic pathways that target specific genomic contexts.


Sign in / Sign up

Export Citation Format

Share Document