scholarly journals DRUL for school: Opening Pre-K with safe, simple, sensitive saliva testing for SARS-CoV-2

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252949
Author(s):  
Mayu O. Frank ◽  
Nathalie E. Blachere ◽  
Salina Parveen ◽  
Ezgi Hacisuleyman ◽  
John Fak ◽  
...  

To address the need for simple, safe, sensitive, and scalable SARS-CoV-2 tests, we validated and implemented a PCR test that uses a saliva collection kit use at home. Individuals self-collected 300 μl saliva in vials containing Darnell Rockefeller University Laboratory (DRUL) buffer and extracted RNA was assayed by RT-PCR (the DRUL saliva assay). The limit of detection was confirmed to be 1 viral copy/μl in 20 of 20 replicate extractions. Viral RNA was stable in DRUL buffer at room temperature up to seven days after sample collection, and safety studies demonstrated that DRUL buffer immediately inactivated virus at concentrations up to 2.75x106 PFU/ml. Results from SARS-CoV-2 positive nasopharyngeal (NP) swab samples collected in viral transport media and assayed with a standard FDA Emergency Use Authorization (EUA) test were highly correlated with samples placed in DRUL buffer. Direct comparison of results from 162 individuals tested by FDA EUA oropharyngeal (OP) or NP swabs with co-collected saliva samples identified four otherwise unidentified positive cases in DRUL buffer. Over six months, we collected 3,724 samples from individuals ranging from 3 months to 92 years of age. This included collecting weekly samples over 10 weeks from teachers, children, and parents from a pre-school program, which allowed its safe reopening while at-risk pods were quarantined. In sum, we validated a simple, sensitive, stable, and safe PCR-based test using a self-collected saliva sample as a valuable tool for clinical diagnosis and screening at workplaces and schools.

2021 ◽  
Author(s):  
Mayu Frank ◽  
Nathalie E Blachere ◽  
Salina Parveen ◽  
Ezgi Hacisuleyman ◽  
John Fak ◽  
...  

To address the need for simple, safe, sensitive, and scalable SARS-CoV-2 tests, we validated and implemented a PCR test that uses a saliva collection kit use at home. Individuals self-collected 300 ul saliva in vials containing Darnell Rockefeller University Laboratory (DRUL) buffer and extracted RNA was assayed by RT-PCR (the DRUL saliva assay). The limit of detection was confirmed to be 1 viral copy/ul in 20 of 20 replicate extractions. Viral RNA was stable in DRUL buffer at room temperature up to seven days after sample collection, and safety studies demonstrated that DRUL buffer immediately inactivated virus at concentrations up to 2.75x106 PFU/ml. Results from SARS-CoV-2 positive nasopharyngeal (NP) swab samples collected in viral transport media and assayed with a standard FDA Emergency Use Authorization (EUA) test were highly correlated with samples placed in DRUL buffer. Direct comparison of results from 162 individuals tested by FDA EUA oropharyngeal (OP) or NP swabs with co-collected saliva samples identified four otherwise unidentified positive cases in DRUL buffer. Over six months, we collected 3,724 samples from individuals ranging from 3 months to 92 years of age. This included collecting weekly samples over 10 weeks from teachers, children, and parents from a pre-school program, which allowed its safe reopening while at-risk pods were quarantined. In sum, we validated a simple, sensitive, stable, and safe PCR-based test using a self-collected saliva sample as a valuable tool for clinical diagnosis and screening at workplaces and schools.


2021 ◽  
Author(s):  
Yuan Carrington ◽  
Justin Orlino ◽  
Alejandro Romero ◽  
Jessica Gustin ◽  
Mahssa Rezaei ◽  
...  

AbstractCOVID-19 testing is not accessible for millions during this pandemic despite our best efforts. Without greatly expanded testing of asymptomatic individuals, contact tracing and subsequent isolation of spreaders remains as a means for control. In an effort to increase RT-PCR assay testing for the presence of the novel beta-coronavirus SARS-CoV-2 as well as improve sample collection safety, GenTegra LLC has introduced two products for saliva collection and viral RNA stabilization: GTR-STM™ (GenTegra Saliva Transport Medium) and GTR-STMdk™ (GenTegra Saliva Transport Medium Direct to PCR). Both products contain a proprietary formulation based on GenTegra’s novel “Active Chemical Protection™” (ACP) technology that gives non-dilutive, error-free saliva sample collection using RNA stabilization chemicals already dried in the collection tube.GTR-STM can be used for safer saliva-based sample collection at home (or at a test site). Following saliva collection, the sample-containing GTR-STM can be kept at ambient temperature during shipment to an authorized CLIA lab for analysis. SARS-CoV-2 viral RNA in GTR-STM is stable for over a month at ambient temperature, easily surviving the longest transit times from home to lab. GTR-STM enhances patient comfort, convenience, compliance and reduces infectious virus exposure to essential medical and lab professionals.Alternatively, the GTR-STMdk direct-into-PCR product can be used to improve lab throughput and reduce reagent costs for saliva sample collection and testing at any lab site with access to refrigeration. GTR-STMdk reduces lab process time by 25% and reagent costs by 30% compared to other approaches. Since GTR-STMdk retains SARS-CoV-2 viral RNA stability for three days at ambient temperature, it is optimized for lab test site rather than at home saliva collection. SARS-COV-2 viral RNA levels as low as 0.4 genome equivalents/uL are detected in saliva samples using GTR-STMdk. The increased sensitivity of SARS-CoV-2 detection can expand COVID-19 testing to include asymptomatic individuals using pooled saliva.One Sentence SummaryGTR-STM and Direct-into-PCR GTR-STMdk offer substantive improvements in SARS-CoV-2 viral RNA stability, safety, and RT-PCR process efficiency for COVID-19 testing by using a non-dilutive saliva sample collection system for individuals at home or onsite respectively.


2020 ◽  
Vol 15 (15) ◽  
pp. 1483-1487
Author(s):  
Nikhil S Sahajpal ◽  
Ashis K Mondal ◽  
Allan Njau ◽  
Sudha Ananth ◽  
Kimya Jones ◽  
...  

RT-PCR-based assays for the detection of SARS-CoV-2 have played an essential role in the current COVID-19 pandemic. However, the sample collection and test reagents are in short supply, primarily due to supply chain issues. Thus, to eliminate testing constraints, we have optimized three key process variables: RNA extraction and RT-PCR reactions, different sample types and media to facilitate SARS-CoV-2 testing. By performing various validation and bridging studies, we have shown that various sample types such as nasopharyngeal swab, bronchioalveolar lavage and saliva, collected using conventional nasopharyngeal swabs, ESwab or 3D-printed swabs and, preserved in viral transport media, universal transport media, 0.9% sodium chloride or Amies media are compatible with RT-PCR assay for COVID-19. Besides, the reduction of PCR reagents by up to fourfold also produces reliable results.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shan Wei ◽  
Esther Kohl ◽  
Alexandre Djandji ◽  
Stephanie Morgan ◽  
Susan Whittier ◽  
...  

AbstractThe COVID-19 pandemic has resulted in an urgent need for a rapid, point of care diagnostic testing that could be rapidly scaled on a worldwide level. We developed and tested a highly sensitive and robust assay based on reverse transcription loop mediated isothermal amplification (RT-LAMP) that uses readily available reagents and a simple heat block using contrived spike-in and actual clinical samples. RT-LAMP testing on RNA-spiked samples showed a limit of detection (LoD) of 2.5 copies/μl of viral transport media. RT-LAMP testing directly on clinical nasopharyngeal swab samples in viral transport media had an 85% positive percentage agreement (PPA) (17/20), and 100% negative percentage agreement (NPV) and delivered results in 30 min. Our optimized RT-LAMP based testing method is a scalable system that is sufficiently sensitive and robust to test for SARS-CoV-2 directly on clinical nasopharyngeal swab samples in viral transport media in 30 min at the point of care without the need for specialized or proprietary equipment or reagents. This cost-effective and efficient one-step testing method can be readily available for COVID-19 testing world-wide, especially in resource poor settings.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252687
Author(s):  
Sukalyani Banik ◽  
Kaheerman Saibire ◽  
Shraddha Suryavanshi ◽  
Glenn Johns ◽  
Soumitesh Chakravorty ◽  
...  

Background Upper respiratory samples used to test for SARS-CoV-2 virus may be infectious and present a hazard during transport and testing. A buffer with the ability to inactivate SARS-CoV-2 at the time of sample collection could simplify and expand testing for COVID-19 to non-conventional settings. Methods We evaluated a guanidium thiocyanate-based buffer, eNAT™ (Copan) as a possible transport and inactivation medium for downstream Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) testing to detect SARS-CoV-2. Inactivation of SARS-CoV-2 USA-WA1/2020 in eNAT and in diluted saliva was studied at different incubation times. The stability of viral RNA in eNAT was also evaluated for up to 7 days at room temperature (28°C), refrigerated conditions (4°C) and at 35°C. Results SARS-COV-2 virus spiked directly in eNAT could be inactivated at >5.6 log10 PFU/ml within a minute of incubation. When saliva was diluted 1:1 in eNAT, no cytopathic effect (CPE) on VeroE6 cells was observed, although SARS-CoV-2 RNA could be detected even after 30 min incubation and after two cell culture passages. A 1:2 (saliva:eNAT) dilution abrogated both CPE and detectable viral RNA after as little as 5 min incubation in eNAT. SARS-CoV-2 RNA from virus spiked at 5X the limit of detection remained positive up to 7 days of incubation in all tested conditions. Conclusion eNAT and similar guanidinium thiocyanate-based media may be of value for transport, stabilization, and processing of clinical samples for RT-PCR based SARS-CoV-2 detection.


2016 ◽  
Vol 18 (5) ◽  
pp. 521-530 ◽  
Author(s):  
Jacquelyn Y. Taylor ◽  
Michelle L. Wright ◽  
Cindy A. Crusto ◽  
Yan V. Sun

The Intergenerational Impact of Genetic and Psychological Factors on Blood Pressure (InterGEN) study aims to delineate the independent and interaction effects of genomic (genetic and epigenetic) and psychological–environmental (maternally perceived racial discrimination, mental health, and parenting behavior) factors on blood pressure (BP) among African American mother–child dyads over time. The purpose of this article is to describe the two-step genetic and epigenetic approach that will be executed to explore Gene × Environment interactions on BP using a longitudinal cohort design. Procedure for the single collection of DNA at Time 1 includes the use of the Oragene 500-format saliva sample collection tube, which provides enough DNA for both the Illumina Multi-Ethnic Genotyping and 850K EPIC methylation analyses. BP readings, height, weight, percentage of body fat, and percentage of body water will be measured on all participants every 6 months for 2 years for a total of 4 time points. Genomic data analyses to be completed include multivariate modeling, assessment of population admixture and structure, and extended analyses including Bonferroni correction, false discovery rate methods, Monte Carlo approach, EIGENSTRAT methods, and so on, to determine relationships among both main and interaction effects of genetic, epigenetic, and psychological environmental factors on BP.


2019 ◽  
Vol 20 (19) ◽  
pp. 4729 ◽  
Author(s):  
Pingping Han ◽  
Sašo Ivanovski

Different collection methods may influence the ability to detect and quantify biomarker levels in saliva, particularly in the expression of DNA/RNA methylation regulators of several inflammations and tissue turnover markers. This pilot study recruited five participants and unstimulated saliva were collected by either spitting or drooling, and the relative preference for each method was evaluated using a visual analogue scale. Subsequently, total RNA, gDNA and proteins were isolated using the Trizol method. Thereafter, a systematic evaluation was carried out on the potential effects of different saliva collection methods on periodontium-associated genes, DNA/RNA epigenetic factors and periodontium-related DNA methylation levels. The quantity and quality of DNA and RNA were comparable from different collection methods. Periodontium-related genes, DNA/RNA methylation epigenetic factors and periodontium-associated DNA methylation could be detected in the saliva sample, with a similar expression for both methods. The methylation of tumour necrosis factor-alpha gene promoter from drooling method showed a significant positive correlation (TNF α, r = 0.9) with clinical parameter (bleeding on probing-BOP). In conclusion, the method of saliva collection has a minimal impact on detecting periodontium-related genetic and epigenetic regulators in saliva. The pilot data shows that TNF α methylation may be correlated with clinical parameters.


2020 ◽  
pp. jclinpath-2020-206834 ◽  
Author(s):  
Dipak Sapkota ◽  
Tine Merete Søland ◽  
Hilde Kanli Galtung ◽  
Lars Peter Sand ◽  
Simone Giannecchini ◽  
...  

The COVID-19 (caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) epidemic started in Wuhan (Hubei Province, China) in mid-December 2019 and quickly spread across the world as a pandemic. As a key to tracing the disease and to implement strategies aimed at breaking the chain of disease transmission, extensive testing for SARS-CoV-2 was suggested. Although nasopharyngeal/oropharyngeal swabs are the most commonly used biological samples for SARS-CoV-2 diagnosis, they have a number of limitations related to sample collection and healthcare personnel safety. In this context, saliva is emerging as a promising alternative to nasopharyngeal/oropharyngeal swabs for COVID-19 diagnosis and monitoring. Saliva collection, being a non-invasive approach with possibility for self-collection, circumvents to a great extent the limitations associated with the use of nasopharyngeal/oropharyngeal swabs. In addition, various salivary biomarkers including the salivary metabolomics offer a high promise to be useful for better understanding of COVID-19 and possibly in the identification of patients with various degrees of severity, including asymptomatic carriers. This review summarises the clinical and scientific basis for the potential use of saliva for COVID-19 diagnosis and disease monitoring. Additionally, we discuss saliva-based biomarkers and their potential clinical and research applications related to COVID-19.


2014 ◽  
Vol 38 (4) ◽  
pp. 302-306 ◽  
Author(s):  
Arzu Aykut-Yetkiner ◽  
Nazan Kara ◽  
Mustafa Ateş ◽  
Nazan Ersin ◽  
Fahinur Ertuğrul

Objective: The aim of this study was to evaluate the remineralization effect of Casein Phosphopeptid Amorphous Calcium Phosphate (CPP-ACP) on white spot lesions (WSL) and its inhibitory effect on Streptococcus mutans colonization. Study design: The study group consisted of 60 children exhibiting at least 1-WSL. Subjects were randomly divided into 2 groups: a test group of using CPP-ACP cream (Tooth Mousse, GC Europe N.V., Leuven, Belgium) and a control group using only fluoride containing toothpaste for a period of 3-months. Baseline WSLs were scored using DIAGNOdent device (KaVo Germany) and the saliva samples were collected to measure S. mutans counts. After the 3-month period the WSLs were again recorded and the saliva sample collection was repeated. Wilcoxon Signed Ranks Test was used for statistical analysis. Results: DIAGNOdent measurements were increased by time (p=0.002) in control group and no statistically significant difference (p=0.217) was found in test group by the 3-month period. In both groups, the mutans counts were decreased in 3-month experimental period. Conclusions: These clinical and laboratory results suggested that CPP-ACP containing cream had a slight remineralization effect on the WSL in the 3-month evaluation period however longer observation is recommended to confirm whether the greater change in WSLs is maintained.


2013 ◽  
Vol 16 (2) ◽  
pp. 197-208 ◽  
Author(s):  
Heidi H. Ewen ◽  
Jennifer Kinney

Objectives:Adjustment to senior housing entails significant lifestyle changes and is a stressful process. The adaptation process is dynamic and has yet to be studied using the conceptual model of allostasis. This article presents exemplars of women whose profiles represent three allostatic states: successful adaptation (homeostasis), ongoing adaptation (allostasis), and maladaptation (allostatic load).Method:Older women who had relocated to senior housing participated in three interviews and monthly saliva sample collection over a 6-month period. Saliva was assayed for diurnal cortisol secretion. Triangulation of mixed methods was used to analyze data, and psychosocial data were mapped onto the cortisol graphs to illustrate changes in stress reactivity and well-being.Results:Coping abilities, perceptions of stressors, and cortisol measures provide a detailed picture of the interplay among events and perceptions and the effects of both on well-being.Discussion:The case exemplars provide detailed information on the complexity of psychosocial and physiological components of the model of allostasis. This study also fills a gap in knowledge on negative relocation outcomes using the allostatic model.


Sign in / Sign up

Export Citation Format

Share Document