scholarly journals The stability of quetiapine oral suspension compounded from commercially available tablets

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255963
Author(s):  
Jennie Tran ◽  
Melissa A. Gervase ◽  
Jason Evans ◽  
Rebecca Deville ◽  
Xiaowei Dong

Quetiapine fumarate (QF) is an atypical antipsychotic used off-label for the treatment of delirium in critically-ill infants and children. For the treatment of pediatric populations or patient populations with trouble swallowing tablets, an oral suspension would be an ideal dosage formulation. However, there are no liquid formulations of QF commercially available. Therefore, a compounded oral suspension prepared from the commercial QF tablets is widely used in clinical settings. The extemporaneous preparation of QF compounded oral suspension changes the formulation from a solid form to a liquid form. Thus, the stability of QF compounded oral suspension should be critically evaluated to guide pharmacists for administration and storage of QF compounded oral suspensions. However, the stability of the nonaqueous oral QF suspension was not measured. The objective of this study was to develop QF compounded oral suspensions at 10 mg/mL by using commercial QF tablets in two readily available aqueous vehicles (Ora-Sweet and Ora-Blend) and measure their stability at both room temperature and under refrigeration. Physical stability of the QF compounded suspensions were evaluated by appearance and odor. Chemical stability of the QF compounded suspensions were evaluated based on pH, degradation, drug content and the amount of the drug dissolved in the vehicles. An HPLC method was validated and used to evaluate QF compounded suspensions over 60 days. In addition to the total drug in the suspensions, the dissolved drug in the vehicles was also measured during the stability testing and evaluated as a stability parameter. Overall, QF suspension prepared in Ora-Blend was preferable, demonstrating a superior 60-day stability at both room temperature and refrigerated storage.

1997 ◽  
Vol 31 (7-8) ◽  
pp. 851-852 ◽  
Author(s):  
Milap C. Nahata

OBJECTIVE: Amiodarone is currently available in a tablet dosage form, which cannot be used in young pediatric patients. The objective of our study was to determine the stability of amiodarone in an oral suspension stored at two temperatures. METHODS: Commercially available amiodarone tablets (200 mg each) were dissolved in purified water and a suspension prepared in methylcellulose 1 % and syrup to yield a concentration of 5 mg/mL. The dosage form was stored in 10 glass and 10 plastic prescription bottles. One-half of the bottles were stored at 4 °C and the others at 25 °C. Three samples were taken from each bottle at 0, 7, 14, 28, 42, 56. 70, and 91 days (n = 15). Amiodarone concentrations were measured by a validated and stability-indicating HPLC method; the pH was also determined in each sample. The drug was considered stable if its concentration exceeded 90% of the original concentration. RESULTS: The mean concentration of amiodarone was 90% or more at 4 °C for 91 days and at 25 °C for 42 days. The concentration was not affected by the type of storage container. Over 91 days, the pH did not change at 4 °C; it decreased slightly from 4.4 to 4.3 at 25 °C. CONCLUSIONS: Amiodarone was stable in an oral suspension for 3 months under refrigeration and for 6 weeks at room temperature.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 560
Author(s):  
Wei Zhou ◽  
Ce Cheng ◽  
Li Ma ◽  
Liqiang Zou ◽  
Wei Liu ◽  
...  

There is growing interest in developing biomaterial-coated liposome delivery systems to improve the stability and bioavailability of curcumin, which is a hydrophobic nutraceutical claimed to have several health benefits. The curcumin-loaded rhamnolipid liposomes (Cur-RL-Lips) were fabricated from rhamnolipid and phospholipids, and then chitosan (CS) covered the surface of Cur-RL-Lips by electrostatic interaction to form CS-coated Cur-RL-Lips. The influence of CS concentration on the physical stability and digestion of the liposomes was investigated. The CS-coated Cur-RL-Lips with RL:CS = 1:1 have a relatively small size (412.9 nm) and positive charge (19.7 mV). The CS-coated Cur-RL-Lips remained stable from pH 2 to 5 at room temperature and can effectively slow the degradation of curcumin at 80 °C; however, they were highly unstable to salt addition. In addition, compared with Cur-RL-Lips, the bioavailability of curcumin in CS-coated Cur-RL-Lips was relatively high due to its high transformation in gastrointestinal tract. These results may facilitate the design of a more efficacious liposomal delivery system that enhances the stability and bioavailability of curcumin in nutraceutical-loaded functional foods and beverages.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Anne-Claire Bonnaure ◽  
Romain Bellay ◽  
Pauline Rault ◽  
Marie-Antoinette Lester ◽  
Pierre-Nicolas Boivin

Abstract Background Prednisone is a corticosteroid used in several inflammatory diseases and cancers. In France, no available prednisone drinkable formulation exists. Instead, an oral syrup of prednisone with ethanol, sodium benzoate and simple syrup is produced. However, sodium benzoate can induce neonatal icterus and alcohol is not authorized for children below 3 years of age. The aim of this study was to determine the stability of 5 mg/mL prednisone oral suspension in a commercial compounding excipient: Syrspend® SF PH4. Methods Three batches of oral suspensions were prepared, using micronized prednisone and Syrspend® SF PH4. They were packaged in amber glass vials and stored at room temperature. On day 0, 1, 4, 10, 30, 60 and 90, we observed physical and chemical stability (pH measurement, osmolality measurement, residual concentrations of prednisone and degradation product identification). A stability indicating method was developed using high performance liquid chromatography with Ultraviolet detection at 254 nm. Results Prednisone concentrations remained stable within ± 5 % of nominal values for 60 days. No degradation product and change of physicochemical properties were detected. Conclusion This study showed that 5 mg/mL prednisone oral suspension in Syrspend® SF PH4 is stable for 60 days, at room temperature and protected from light.


2014 ◽  
Vol 1060 ◽  
pp. 41-44
Author(s):  
Thapani Noi-Ang ◽  
Anusorn Charoensin ◽  
Aksiporn Warangkanagool ◽  
Athid Kulkong ◽  
Nattaporn Soonthornsit ◽  
...  

This study aimed to develop oral microemulsions (MEs) containing M. alba extract. The stability study of the extract incorporated in the ME was also included. First, pseudo-ternary phase diagrams were constructed using caprylic/capric triglyceride (oil), PEG-8 caprylic/capric glycerides (S), polyglyceryl-3 diisostearate (CoS). Propylene glycol (PG) was used as a cosolvent. Then, the formulations were chosen to incorporate MSE and subjected to stability testing at 4o C, room temperature (RT) and 45o C at 75% RH for 8 weeks. Physical stability of the formulations was assessed by visual observation on the precipitation, phase separation and cloud point. Chemical stability was determined by quantitative analysis of oxyresveratrol using high performance liquid chromatography (HPLC). The results showed that with increasing the ratio of S/CoS, the area of ME existing region in phase diagrams increased. The addition of PG into aqueous phase at ratio 1:1 slightly affected the formation of MEs. Physical stability was not affected by temperature but was influenced by the components of the formulations. However, degradation of the extract was affected by both temperature and components of the formulations. The extract was stable at 4o C and RT. However, at 45o C, it degraded about 16-57%, depending on the components of the formulations. The best ME formulation consisted of 10% caprylic/capric triglyceride, 80% PEG-8 caprylic/capric glycerides and polyglyceryl-3 diisostearate (4:1), and 10% water and PG (1:1).


2019 ◽  
Vol 72 (5) ◽  
Author(s):  
Élise D’Huart ◽  
Jean Vigneron ◽  
Alexandre Charmillon ◽  
Igor Clarot ◽  
Béatrice Demoré

ABSTRACTBackground: In severe infections, high-concentration vancomycin may be administered by continuous infusion. The dosage of vancomycin may reach 60 mg/kg per day. Objectives: To study the feasibility of preparing high-concentration vancomycin solutions (40 to 83.3 mg/mL), to study the effect of an electric syringe pump on the physical stability of high-concentration vancomycin, and to study the stability of vancomycin 62.5 and 83.3 mg/mL in 0.9% sodium chloride (0.9% NaCl) or 5% dextrose in water (D5W) with storage up to 48 h at room temperature. Methods: The following sets of syringes were prepared: (1) 4 syringes of vancomycin in 0.9% NaCl for each of 5 concentrations between 40 and 83.3 mg/mL (total 20 syringes); (2) 6 syringes at 83.3 mg/mL in 0.9%NaCl and 6 syringes at 83.3 mg/mL in D5W; and (3) 30 syringes at 83.3 mg/mL in D5W. Visual inspection was performed for all 3 syringe sets, and subvisual inspection for sets 1 and 2 (for periods of 24 h for set 1 and 48 h for sets 2 and 3). One syringe of vancomycin 83.3 mg/mL with each solvent was inserted into an electric syringe pump, and samples from the infusion line and collected after transit through the pump were inspected visually. Chemical stability was evaluated by high-performance liquid chromatography, and physical stability, pH, and osmolality were investigated. Results: For all sets of syringes, no physical modification was observed over time, nor were any changes observed after transit through the electric syringe pump. In 0.9% NaCl, vancomycin 62.5 and 83.3 mg/mL retained more than 90% of the initial concentration after 48 and 24 h, respectively; however, for the 83.3 mg/mL solution, precipitate was visible after 48 h. In D5W, vancomycin at 62.5 and 83.3 mg/mL retained more than 90%of the initial concentration after 48 h. Conclusion: It was feasible to prepare high-concentration solutions of vancomycin. The electric syringe pump did not cause any precipitation. Vancomycin in D5W at 62.5 and 83.3 mg/mL was stable over 48 h at room temperature. Precipitation occurred in 0.9% NaCl. D5W is therefore recommended as the solvent for this drug.RÉSUMÉContexte : En cas d’infection grave, de la vancomycine à forte concentration peut être administrée par perfusion continue à une dose pouvant atteindre 60 mg/kg par jour. Objectifs : Mener une étude de faisabilité portant sur la préparation de solutions de vancomycine à forte concentration (de 40 à 83,3 mg/mL); étudier l’effet d’un pousse-seringue électrique sur la stabilité physique de la vancomycine à forte concentration; et étudier la stabilité de la vancomycine (62,5 et 83,3 mg/mL) dans une solution de chlorure de sodium à 0,9 % (NaCl à 0,9 %) ou dans une solution aqueuse de dextrose à 5 % (D5W) après 48 h à la température ambiante.Méthodes : Trois ensembles de seringues ont été préparés : (1) quatre seringues de vancomycine dans une solution de NaCl à 0,9 %, à chacune des cinq concentrations comprises entre 40 et 83,3 mg/mL (20 seringues au total); (2) six seringues à 83,3 mg/mL dans une solution de NaCl à 0,9 % et six seringues à 83,3 mg/mL dans une solution de D5W; et (3) 30 seringues à 83,3 mg/mL dans une solution de D5W. Une inspection visuelle des trois ensembles de seringues et une inspection « sous-visuelle » des ensembles 1 et 2 ont eu lieu (période de 24 h pour l’ensemble 1 et de 48 h pour les ensembles 2 et 3). Une seringue contenant de la vancomycine à 83,3 mg/mL mélangée à chaque solvant a été insérée dans un pousse-seringue électrique, et les échantillons prélevés dans le tube de perfusion et ceux recueillis après leur passage dans la pompe ont été inspectés visuellement. La stabilité chimique a été évaluée par chromatographie liquide à haute performance et la stabilité physique, le pH ainsi que l’osmolalité ont eux aussi été étudiés. Résultats : Les trois ensembles de seringues n’ont présenté aucune modification physique avec le temps. Aucun changement n’a non plus été observé après le passage dans le pousse-seringue électrique. Dans la solution de NaCl à 0,9 %, la vancomycine à 62,5 et à 83,3 mg/mL a conservé plus de 90 % de sa concentration initiale respectivement après 48 et 24 h. Cependant, le précipité de la solution à 83,3 mg/mL était visible après 48 h. Dans la solution de D5W, la vancomycine à 62,5 et à 83,3 mg/mL a conservé plus de 90 % de sa concentration initiale après 48 h. Conclusion : La préparation de solutions de vancomycine à forte concentration est faisable. Le pousse-seringue électrique n’a pas causé de précipitation. La vancomycine dans la solution de D5W à 62,5 et à 83,3 mg/mL est restée stable pendant plus de 48 h à la température ambiante. Les précipitations se sont produites dans les solutions de NaCl à 0,9 %. On recommande donc la solution de D5W comme solvant pour ce médicament.


2021 ◽  
Vol 1 (1) ◽  
pp. 54-62
Author(s):  
Salma Nadirah Md Salim ◽  
Mohd Danial Mohd Murshid ◽  
Amirah Mohd Gazzali

Introduction: Rifampicin is a first line antituberculosis drug that is commonly used in the treatment of tuberculosis, both in adults and paediatric patients. However, there is a lack of liquid formulation for rifampicin in the market due to the small market size and the physicochemical properties of the drug itself. An innovative new mix called X-Temp® oral suspension system (OSS) has been available in the market as a choice of vehicle for extemporaneous suspension. Aim: The aim of this study was to prepare rifampicin suspension in the X-Temp® OSS and evaluate its stability following storage at two temperatures – refrigerated (5 °C ± 3 °C) and in a stability chamber (30 °C ± 2 °C/RH 75% ± 5%). Materials and method: This study investigates the physicochemical and microbiological stability of rifampicin formulated in X-temp® OSS. The rifampicin suspension was prepared at 25mg/ml and kept in two types of amber-coloured storage bottles. The bottles were stored in an open and close storage system at 5 oC (refrigeration) and 30 °C/75% RH (non-refrigerated) and the stability of the product was evaluated at specified time intervals. Results: It was found that the content of rifampicin remained above 90% of the original concentration throughout the study as required by the standard references. Visual appearance, colour, odour and pH remained unchanged throughout the study period and the extemporaneous preparation was not susceptible to microbial contamination. Conclusion: Results from this stability study confirmed that the X-temp® OSS is a suitable vehicle for the preparation of extemporaneous rifampicin liquid formulation.


Author(s):  
FEBRINA AMELIA SAPUTRI ◽  
PATIHUL HUSNI ◽  
NORISCA ALIZA PUTRIANA

Objective: This study aims to examine the physical and chemical stability of neem oil cream. Methods: Physical stability was conducted by storing the cream at room temperature (25±2 °C/65 %RH±5 %RH) and high temperature (40±2 °C/75 % RH±5 % RH) for 3 mo. HPLC method using Dionex with UV detection at 219 nm, Shodex (C-18) HPLC packed column (4.6 mmID x 250 mmL), acetonitrile: water [30:70] as mobile phase, 10 min isocratic elution with a flow rate of 1.0 ml/min with volume injection 20 μL was validated then was carried out to measure azadirachtin levels in neem oil cream. The chemical stability of azadirachtin in the cream was determined for 90 days by using this validated method. Results: The neem oil cream was physically stable. The HPLC method of azadirachtin meets all the validation parameters and can be used to analyze the chemical stability of azadirachtin in neem oil cream. Neem oil cream was stable for 4 w at 25 °C and for 1 w at 40 °C. Conclusion: The neem oil cream was either physically or chemically stable for 4 weeks at 25 oC and 1 week at 40 oC


2017 ◽  
Vol 74 (24) ◽  
pp. 2060-2064 ◽  
Author(s):  
Paul O. Lewis ◽  
David B. Cluck ◽  
Jessica D. Huffman ◽  
Amanda P. Ogle ◽  
Stacy D. Brown

Abstract Purpose Development of a stability-indicating high-performance liquid chromatography (HPLC) method for pyrimethamine analysis, with subsequent application of that method to assess the 90-day stability of a pyrimethamine suspension compounded from bulk USP-grade pyrimethamine powder, is described. Methods A stability-indicating method of HPLC with ultraviolet detection specific to pyrimethamine was developed according to pharmacopeial recommendations and validated. The method was applied to investigate the stability of a 2-mg/mL pyrimethamine suspension in a vehicle consisting of Ora-Plus and Ora-Sweet (Perrigo) over a period of 90 days. Three replicate test preparations were stored at room temperature or refrigerated at 4.3–5.2 °C, and samples were analyzed in duplicate immediately after preparation and on study days 1, 2, 4, 7, 10, 14, 21, 30, 48, 60, 75, and 90. Results The 2-mg/mL suspension of pyrimethamine in Ora-Plus and Ora-Sweet retained 90–110% of the labeled potency to 90 days at both temperature ranges. However, color changes in the samples stored at room temperature observed at day 60 indicated that a beyond-use date less than 90 days from the preparation date should be specified when the suspension is to be stored at room temperature. Conclusion The study demonstrated that USP-grade pyrimethamine powder can be formulated as a 2-mg/mL suspension in a vehicle of Ora-Plus and Ora-Sweet and is stable when stored at room temperature and when refrigerated, in amber plastic bottles, for 48 and 90 days, respectively.


2017 ◽  
Vol 9 ◽  
pp. 140
Author(s):  
Mentari Mayang Suminar ◽  
Mahdi Jufri

Objective: Tocotrienols have an antioxidant potential higher than that of tocopherols. Nanoemulsion gel can deliver tocotrienols into the skin toprevent skin damage caused by free radicals and improve the stability of the dosage form. The present study aimed to determine the physical stabilityand antioxidant activity of a nanoemulsion gel formulation containing tocotrienol.Methods: The tocotrienol nanoemulsion was made using tocotrienols, oleic acid, Tween 80, 96% ethanol, and propylene glycol. The gel base was madeusing a carbomer and triethanolamine. A physical stability test was conducted at three different temperatures, namely, low temperature (4±2°C),room temperature (27±2°C), and high temperature (40±2°C). The antioxidant activity was measured using the 2,2-diphenyl-1-picrylhydrazyl methodfor determining inhibitory concentration (IC50) values.Results: Formula 1 demonstrated the best physical stability, with a pH of 6.2. The droplet size of the tocotrienol nanoemulsion gel was 596 nm, witha zeta potential value of −27.1 nm. The IC50 of the tocotrienol nanoemulsion gel was 6252.14 ppm.Conclusion: The nanoemulsion gel formulation retained antioxidant activity and was physically stable for 8 weeks.


1997 ◽  
Vol 31 (9) ◽  
pp. 992-995 ◽  
Author(s):  
Montserrat Pujol ◽  
Montserrat Muñoz ◽  
Josefina Prat ◽  
Victoria Girona ◽  
Jordi De Bolós

Objective To determine the stability of epirubicin in NaCl 0.9% injection under hospital storage conditions. Methods NaCl 0.9% solution was added to epirubicin iyophilized powder to make a final concentration of 1 mg/mL to study the degradation kinetics and 2 mg/mL to study the stability in polypropylene syringes under hospital conditions. Setting Physical chemistry laboratory, Unitat de Fisicoquímica, Universitat de Barcelona. Main outcome Measures Solutions of epirubicin at 2 mg/mL in NaCl 0.9% solutions stored in plastic syringes were studied under hospital conditions at room temperature (25 ± 1 °C) and under refrigeration (4 ± 1 °C) both protected from light and exposed to room light (~50 lumens/m2). All samples were studied in triplicate and epirubicin concentrations were obtained periodically throughout each storage/time condition via a specific stability-indicating HPLC method. To determine the degradation kinetics, solutions of epirubicin in NaCl 0.9% at 1 mg/mL were stored at different temperatures (40, 50, and 60 °C) to obtain the rate degradation constant and the shelf life at room temperature and under refrigeration. Results The degradation of epirubicin in NaCl 0.9% solutions follows first-order kinetics. The shelf life was defined as the time by which the epirubicin concentration had decreased by 10% from the initial concentration. In this study, epirubicin was stable in NaCl 0.9% injection stored in polypropylene containers for all time periods and all conditions. That results in a shelf life of at least 14 and 180 days at 25 and 4 °C, respectively. The maximum decrease in epirubicin concentration observed at 25 °C and 14 days was 4%, and at 4 °C and 180 days was 8%. The predicted shelf life obtained from the Arrhenius equation was 72.9 ± 0.2 and 3070 ± 15 days at 25 and 4 °C, respectively, in both dark and illuminated conditions. Conclusions Solutions of epirubicin in NaCl 0.9% at 2 mg/mL are chemically stable when they are stored in polypropylene syringes under hospital storage conditions. No special precaution is neccessary to protect epirubicin solutions (2 mg/mL) from light.


Sign in / Sign up

Export Citation Format

Share Document