scholarly journals Physicochemical Stability of Vancomycin at High Concentrations in Polypropylene Syringes

2019 ◽  
Vol 72 (5) ◽  
Author(s):  
Élise D’Huart ◽  
Jean Vigneron ◽  
Alexandre Charmillon ◽  
Igor Clarot ◽  
Béatrice Demoré

ABSTRACTBackground: In severe infections, high-concentration vancomycin may be administered by continuous infusion. The dosage of vancomycin may reach 60 mg/kg per day. Objectives: To study the feasibility of preparing high-concentration vancomycin solutions (40 to 83.3 mg/mL), to study the effect of an electric syringe pump on the physical stability of high-concentration vancomycin, and to study the stability of vancomycin 62.5 and 83.3 mg/mL in 0.9% sodium chloride (0.9% NaCl) or 5% dextrose in water (D5W) with storage up to 48 h at room temperature. Methods: The following sets of syringes were prepared: (1) 4 syringes of vancomycin in 0.9% NaCl for each of 5 concentrations between 40 and 83.3 mg/mL (total 20 syringes); (2) 6 syringes at 83.3 mg/mL in 0.9%NaCl and 6 syringes at 83.3 mg/mL in D5W; and (3) 30 syringes at 83.3 mg/mL in D5W. Visual inspection was performed for all 3 syringe sets, and subvisual inspection for sets 1 and 2 (for periods of 24 h for set 1 and 48 h for sets 2 and 3). One syringe of vancomycin 83.3 mg/mL with each solvent was inserted into an electric syringe pump, and samples from the infusion line and collected after transit through the pump were inspected visually. Chemical stability was evaluated by high-performance liquid chromatography, and physical stability, pH, and osmolality were investigated. Results: For all sets of syringes, no physical modification was observed over time, nor were any changes observed after transit through the electric syringe pump. In 0.9% NaCl, vancomycin 62.5 and 83.3 mg/mL retained more than 90% of the initial concentration after 48 and 24 h, respectively; however, for the 83.3 mg/mL solution, precipitate was visible after 48 h. In D5W, vancomycin at 62.5 and 83.3 mg/mL retained more than 90%of the initial concentration after 48 h. Conclusion: It was feasible to prepare high-concentration solutions of vancomycin. The electric syringe pump did not cause any precipitation. Vancomycin in D5W at 62.5 and 83.3 mg/mL was stable over 48 h at room temperature. Precipitation occurred in 0.9% NaCl. D5W is therefore recommended as the solvent for this drug.RÉSUMÉContexte : En cas d’infection grave, de la vancomycine à forte concentration peut être administrée par perfusion continue à une dose pouvant atteindre 60 mg/kg par jour. Objectifs : Mener une étude de faisabilité portant sur la préparation de solutions de vancomycine à forte concentration (de 40 à 83,3 mg/mL); étudier l’effet d’un pousse-seringue électrique sur la stabilité physique de la vancomycine à forte concentration; et étudier la stabilité de la vancomycine (62,5 et 83,3 mg/mL) dans une solution de chlorure de sodium à 0,9 % (NaCl à 0,9 %) ou dans une solution aqueuse de dextrose à 5 % (D5W) après 48 h à la température ambiante.Méthodes : Trois ensembles de seringues ont été préparés : (1) quatre seringues de vancomycine dans une solution de NaCl à 0,9 %, à chacune des cinq concentrations comprises entre 40 et 83,3 mg/mL (20 seringues au total); (2) six seringues à 83,3 mg/mL dans une solution de NaCl à 0,9 % et six seringues à 83,3 mg/mL dans une solution de D5W; et (3) 30 seringues à 83,3 mg/mL dans une solution de D5W. Une inspection visuelle des trois ensembles de seringues et une inspection « sous-visuelle » des ensembles 1 et 2 ont eu lieu (période de 24 h pour l’ensemble 1 et de 48 h pour les ensembles 2 et 3). Une seringue contenant de la vancomycine à 83,3 mg/mL mélangée à chaque solvant a été insérée dans un pousse-seringue électrique, et les échantillons prélevés dans le tube de perfusion et ceux recueillis après leur passage dans la pompe ont été inspectés visuellement. La stabilité chimique a été évaluée par chromatographie liquide à haute performance et la stabilité physique, le pH ainsi que l’osmolalité ont eux aussi été étudiés. Résultats : Les trois ensembles de seringues n’ont présenté aucune modification physique avec le temps. Aucun changement n’a non plus été observé après le passage dans le pousse-seringue électrique. Dans la solution de NaCl à 0,9 %, la vancomycine à 62,5 et à 83,3 mg/mL a conservé plus de 90 % de sa concentration initiale respectivement après 48 et 24 h. Cependant, le précipité de la solution à 83,3 mg/mL était visible après 48 h. Dans la solution de D5W, la vancomycine à 62,5 et à 83,3 mg/mL a conservé plus de 90 % de sa concentration initiale après 48 h. Conclusion : La préparation de solutions de vancomycine à forte concentration est faisable. Le pousse-seringue électrique n’a pas causé de précipitation. La vancomycine dans la solution de D5W à 62,5 et à 83,3 mg/mL est restée stable pendant plus de 48 h à la température ambiante. Les précipitations se sont produites dans les solutions de NaCl à 0,9 %. On recommande donc la solution de D5W comme solvant pour ce médicament.

2021 ◽  
Vol 74 (4) ◽  
Author(s):  
Isabelle St-Jean ◽  
M Mihaela Friciu ◽  
Anaëlle Monfort ◽  
Jessica MacMahon ◽  
Jean-Marc Forest ◽  
...  

Background: Trimethoprim (TMP) and sulfamethoxazole (SMX) are widely used, in combination, to treat or prevent various infections. Unfortunately, no liquid oral formulation is currently available in Canada for patients who are unable to swallow tablets. Objective: To evaluate the stability of suspensions of TMP and SMX (8 and 40 mg/mL, respectively) prepared in Oral Mix or Oral Mix SF vehicle (Medisca Pharmaceutique Inc) and stored for up to 90 days in amber plastic bottles or amber plastic syringes at 5°C or 25°C. Methods: Suspensions were prepared from bulk powder and from tablets in Oral Mix and Oral Mix SF vehicles, then transferred to amber plastic (polyethylene terephthalate glycol) bottles and plastic oral syringes and stored at 5°C and 25°C. Samples were collected on predetermined study days (0, 7, 14, 23, 45, 60, 75, and 90 days) and analyzed using a validated high-performance liquid chromatography – ultraviolet detection method. A suspension was considered stable if it maintained at least 90% of its initial concentration with 95% confidence. Observations of organoleptic characteristics such as colour and odour, as well as pH, were used to assess physical stability. Results: Suspensions prepared from bulk powder maintained concentrations of TMP and SMX of at least 97% of the initial concentration over the 90-day study period. No obvious changes in colour, odour, or pH were observed. However, acceptable suspensions could not be prepared from the commercial tablets. A persistent foam that developed at the surface of all suspensions prepared from tablets could result in inconsistent dosing. Conclusions: Extemporaneously compounded oral suspensions of TMP and SMX (8 and 40 mg/mL, respectively) prepared from bulk powder in Oral Mix and Oral Mix SF vehicles and stored in amber plastic bottles or syringes at 5°C or 25°C remained stable for at least 90 days. Suspensions made from tablets produced unacceptable formulations. RÉSUMÉ Contexte : Le triméthoprime (TMP) et le sulfaméthoxazole (SMX) sont largement utilisés conjointement pour traiter ou prévenir diverses infections. Malheureusement, aucune formulation liquide orale n’est actuellement disponible au Canada pour les patients incapables d’avaler des comprimés. Objectif : Évaluer la stabilité des suspensions de TMP et de SMX (respectivement 8 et 40 mg/mL) préparées dans un véhicule Oral Mix ou Oral Mix SF (Medisca Pharmaceutique Inc.) et stockées pendant 90 jours dans des flacons ou des seringues en plastique ambré à 5 °C ou 25 °C. Méthodes : Les suspensions ont été préparées à partir de poudre en vrac et de comprimés dans les véhicules Oral Mix et Oral Mix SF, puis transférées dans des flacons en plastique ambré (polyéthylène téréphtalate glycol) et dans des seringues orales en plastique et stockées à 5 °C et 25 °C. Des échantillons ont été recueillis à des jours prédéterminés (0, 7, 14, 23, 45, 60, 75 et 90 jours) et analysés à l’aide d’une méthode de détection par ultraviolet validée de chromatographie en phase liquide à haute performance. La suspension était jugée stable si elle préservait au moins 90 % de sa concentration initiale avec un seuil de confiance de 95 %. Les observations des caractéristiques organoleptiques, comme la couleur et l’odeur, ainsi que le pH, ont été faites pour évaluer la stabilité physique. Résultats : Les suspensions préparées à partir de poudre en vrac préservaient au moins 97 % de la concentration initiale de TMP et de SMX pendant la période d’étude de 90 jours. Aucun changement manifeste de couleur, d’odeur ou de pH n’a été observé. Cependant, les suspensions acceptables n’ont pas pu être préparées à partir des comprimés commerciaux. Une mousse homogène se formait à la surface de ces suspensions, ce qui pourrait entraîner un dosage incohérent. Conclusions : Les suspensions orales composées extemporanées de TMP et SMX (respectivement 8 et 40 mg/mL) préparées à partir de poudre en vrac dans des véhicules Oral Mix et Oral Mix SF et stockées dans des flacons ou des seringues en plastique ambré à 5 °C ou 25°C sont restées stables pendant au moins 90 jours. Les suspensions préparées à partir de comprimés ont donné des formulations inacceptables.


2014 ◽  
Vol 1060 ◽  
pp. 41-44
Author(s):  
Thapani Noi-Ang ◽  
Anusorn Charoensin ◽  
Aksiporn Warangkanagool ◽  
Athid Kulkong ◽  
Nattaporn Soonthornsit ◽  
...  

This study aimed to develop oral microemulsions (MEs) containing M. alba extract. The stability study of the extract incorporated in the ME was also included. First, pseudo-ternary phase diagrams were constructed using caprylic/capric triglyceride (oil), PEG-8 caprylic/capric glycerides (S), polyglyceryl-3 diisostearate (CoS). Propylene glycol (PG) was used as a cosolvent. Then, the formulations were chosen to incorporate MSE and subjected to stability testing at 4o C, room temperature (RT) and 45o C at 75% RH for 8 weeks. Physical stability of the formulations was assessed by visual observation on the precipitation, phase separation and cloud point. Chemical stability was determined by quantitative analysis of oxyresveratrol using high performance liquid chromatography (HPLC). The results showed that with increasing the ratio of S/CoS, the area of ME existing region in phase diagrams increased. The addition of PG into aqueous phase at ratio 1:1 slightly affected the formation of MEs. Physical stability was not affected by temperature but was influenced by the components of the formulations. However, degradation of the extract was affected by both temperature and components of the formulations. The extract was stable at 4o C and RT. However, at 45o C, it degraded about 16-57%, depending on the components of the formulations. The best ME formulation consisted of 10% caprylic/capric triglyceride, 80% PEG-8 caprylic/capric glycerides and polyglyceryl-3 diisostearate (4:1), and 10% water and PG (1:1).


2014 ◽  
Vol 34 (2) ◽  
pp. 212-218 ◽  
Author(s):  
Rahul P. Patel ◽  
Madhur D. Shastri ◽  
Mohammad Bakkari ◽  
Troy Wanandy ◽  
Matthew D. Jose

IntroductionThe objective of this study was to investigate the stability of ceftazidime and cephazolin in a 7.5% icodextrin or pH neutral peritoneal dialysis (PD) solution.MethodsCeftazidime and cephazolin were injected into either a 7.5% icodextrin or pH neutral PD bag to obtain the concentration of 125 mg/L of each antibiotic. A total of nine 7.5% icodextrin or pH neutral PD bags containing ceftazidime and cephazolin were prepared and stored at 1 of 3 different temperatures: 4°C in a domestic refrigerator; 25°C at room temperature; or 37°C (body temperature) in an incubator. An aliquot was withdrawn immediately before (0 hour) or after 12, 24, 48, 96, 120, 144, 168 and 336 hours of storage. Each sample was analyzed in duplicate for the concentration of ceftazidime and cephazolin using a stability-indicating high-performance liquid chromatography technique. Ceftazidime and cephazolin were considered stable if they retained more than 90% of their initial concentration. Samples were also assessed for pH, colour changes and evidence of precipitation immediately after preparation and on each day of analysis.ResultsCeftazidime and cephazolin in both types of PD solution retained more than 90% of their initial concentration for 168 and 336 hours respectively when stored at 4°C. Both of the antibiotics lost more than 10% of the initial concentration after 24 hours of storage at 25 or 37°C. There was no evidence of precipitation at any time under the tested storage conditions. Change in the pH and color was observed at 25 and 37°C, but not at 4°C.ConclusionPremixed ceftazidime and cephazolin in a 7.5% icodextrin or pH neutral PD solution is stable for at least 168 hours when refrigerated. This allows the preparation of PD bags in advance, avoiding the necessity for daily preparation. Both the antibiotics are stable for at least 24 hours at 25 and 37°C, permitting storage at room temperature and pre-warming of PD bags to body temperature prior to its administration.


2020 ◽  
Vol 25 (8) ◽  
pp. 723-729
Author(s):  
Charlotte Gillium ◽  
Mihaela Friciu ◽  
Nicolas Abatzoglou ◽  
Grégoire Leclair

OBJECTIVES Some drugs need to be compounded by the pharmacist before being administered to the patient. A study was conducted to determine the stability of acetazolamide suspensions in 2 different vehicles (Oral Mix and Oral Mix Sugar Free [SF]) from bulk drug and tablets at 2 different temperatures and in 2 different containers (amber plastic bottles and clear plastic syringes). METHODS Acetazolamide suspensions (25 mg/mL) were prepared from bulk drug or tablets. Each suspension, using Oral Mix or Oral Mix SF, was split between 2 types of containers—amber plastic bottles and clear plastic syringes—and stored either at room temperature (23°C–27°C) or under refrigeration (3°C–7°C). Samples were drawn from the suspensions right after preparation and on days 7, 14, 30, 45, 60, 75, and 90. They were then analyzed by high-performance liquid chromatography (HPLC) using a reverse-phase column. A validated stability-indicating HPLC with ultraviolet detection method was developed. A visual inspection and a pH measurement were also completed at each time point. Stability was defined as retention of at least 90% of the initial concentration of acetazolamide suspension. RESULTS At least 91.2% of the initial acetazolamide concentration in suspensions remained throughout the 90-day study period for both vehicles, both containers, and both temperatures. Assays varied between 91.2% and 105.0% of the initial concentration for all 112 tested conditions but 2 (105.2% and 109.0%). Linear regression was calculated for each time profile and remained above 95.0% at the end of the study in all cases. Similarly, pH remained within 0.1 unit of the initial pH, which was 4.2 for Oral Mix and 4.3 for Oral Mix SF. Furthermore, no changes in organoleptic properties were observed because the preparations remained as white fluid suspensions without sedimentation. CONCLUSIONS Acetazolamide suspensions were stable for at least 90 days in all tested conditions because the average drug concentration was not less than 90% of the initial concentration. The beyond-use date could be extended from 60 to 90 days.


2017 ◽  
Vol 52 (8) ◽  
pp. 570-573
Author(s):  
Edward T. Van Matre ◽  
Kang C. Ho ◽  
Clark Lyda ◽  
Beth A. Fullmer ◽  
Alan R. Oldland ◽  
...  

Objective: The objective of this study was to evaluate the stability of epinephrine hydrochloride in 0.9% sodium chloride in polyvinyl chloride bags for up to 60 days. Methods: Dilutions of epinephrine hydrochloride to concentrations of 16 and 64 µg/mL were performed under aseptic conditions. The bags were then placed into ultraviolet light–blocking bags and stored at room temperature (23°C-25°C) or under refrigeration (3°C-5°C). Three samples of each preparation and storage environment were analyzed on days 0, 30, 45, and 60. Physical stability was performed by visual examination. The pH was assessed at baseline and upon final degradation evaluation. Sterility of the samples was not assessed. Chemical stability of epinephrine hydrochloride was evaluated using high-performance liquid chromatography. To determine the stability-indicating nature of the assay, degradation 12 months following preparation was evaluated. Samples were considered stable if there was less than 10% degradation of the initial concentration. Results: Epinephrine hydrochloride diluted to 16 and 64 µg/mL with 0.9% sodium chloride injection and stored in amber ultraviolet light–blocking bags was physically stable throughout the study. No precipitation was observed. At days 30 and 45, all bags had less than 10% degradation. At day 60, all refrigerated bags had less than 10% degradation. Overall, the mean concentration of all measurements demonstrated less than 10% degradation at 60 days at room temperature and under refrigeration. Conclusion: Epinephrine hydrochloride diluted to 16 and 64 µg/mL with 0.9% sodium chloride injection in polyvinyl chloride bags stored in amber ultraviolet light–blocking bags was stable up to 45 days at room temperature and up to 60 days under refrigeration.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 560
Author(s):  
Wei Zhou ◽  
Ce Cheng ◽  
Li Ma ◽  
Liqiang Zou ◽  
Wei Liu ◽  
...  

There is growing interest in developing biomaterial-coated liposome delivery systems to improve the stability and bioavailability of curcumin, which is a hydrophobic nutraceutical claimed to have several health benefits. The curcumin-loaded rhamnolipid liposomes (Cur-RL-Lips) were fabricated from rhamnolipid and phospholipids, and then chitosan (CS) covered the surface of Cur-RL-Lips by electrostatic interaction to form CS-coated Cur-RL-Lips. The influence of CS concentration on the physical stability and digestion of the liposomes was investigated. The CS-coated Cur-RL-Lips with RL:CS = 1:1 have a relatively small size (412.9 nm) and positive charge (19.7 mV). The CS-coated Cur-RL-Lips remained stable from pH 2 to 5 at room temperature and can effectively slow the degradation of curcumin at 80 °C; however, they were highly unstable to salt addition. In addition, compared with Cur-RL-Lips, the bioavailability of curcumin in CS-coated Cur-RL-Lips was relatively high due to its high transformation in gastrointestinal tract. These results may facilitate the design of a more efficacious liposomal delivery system that enhances the stability and bioavailability of curcumin in nutraceutical-loaded functional foods and beverages.


2016 ◽  
Vol 73 (14) ◽  
pp. 1088-1092 ◽  
Author(s):  
Michael F. Wempe ◽  
Alan Oldland ◽  
Nancy Stolpman ◽  
Tyree H. Kiser

Abstract Purpose Results of a study to determine the 90-day stability of dronabinol capsules stored under various temperature conditions are reported. Methods High-performance liquid chromatography (HPLC) with ultraviolet (UV) detection was used to assess the stability of dronabinol capsules (synthetic delta-9-tetrahydrocannabinol [Δ9-THC] mixed with high-grade sesame oil and other inactive ingredients and encapsulated as soft gelatin capsules) that were frozen, refrigerated, or kept at room temperature for three months. The dronabinol capsules remained in the original foil-sealed blister packs until preparation for HPLC–UV assessment. The primary endpoint was the percentage of the initial Δ9-THC concentration remaining at multiple designated time points. The secondary aim was to perform forced-degradation studies under acidic conditions to demonstrate that the HPLC–UV method used was stability indicating. Results The appearance of the dronabinol capsules remained unaltered during frozen, cold, or room-temperature storage. Regardless of storage condition, the percentage of the initial Δ9-THC content remaining was greater than 97% for all evaluated samples at all time points over the three-month study. These experimental data indicate that the product packaging and the sesame oil used to formulate dronabinol capsules efficiently protect Δ9-THC from oxidative degradation to cannabinol; this suggests that pharmacies can store dronabinol capsules in nonrefrigerated automated dispensing systems, with a capsule expiration date of 90 days after removal from the refrigerator. Conclusion Dronabinol capsules may be stored at room temperature in their original packaging for up to three months without compromising capsule appearance and with minimal reduction in Δ9-THC concentration.


2017 ◽  
Vol 74 (19) ◽  
pp. 1579-1583 ◽  
Author(s):  
Abdel Naser Zaid ◽  
Rania Shtayah ◽  
Ayman Qadumi ◽  
Mashour Ghanem ◽  
Rawan Qedan ◽  
...  

Abstract Purpose The stability of an extemporaneously prepared rosuvastatin suspension stored over 30 days under various storage conditions was evaluated. Methods Rosuvastatin suspension was extemporaneously prepared using commercial rosuvastatin tablets as the source of active pharmaceutical ingredient. The organoleptic properties, dissolution profile, and stability of the formulation were investigated. For the stability studies, samples of the suspension were stored under 2 storage conditions, room temperature (25 °C and 60% relative humidity) and accelerated stability chambers (40 °C and 75% relative humidity). Viscosity, pH, organoleptic properties, and microbial contamination were evaluated according to the approved specifications. High-performance liquid chromatography was used for the analysis and quantification of rosuvastatin in selected samples. Microbiological investigations were also conducted. Results The prepared suspension showed acceptable organoleptic properties. It showed complete release of rosuvastatin within 15 minutes. The pH of the suspension was 9.8, which remained unchanged during the stability studies. The microbiological investigations demonstrated that the preparation was free of any microbial contamination. In addition, the suspension showed stability within at least the period of use of a 100-mL rosuvastatin bottle. Conclusion Extemporaneously prepared rosuvastatin 20-mg/mL suspension was stable for 30 days when stored at room temperature.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2394 ◽  
Author(s):  
Jiajun Zeng ◽  
Huanhua Xu ◽  
Yu Cai ◽  
Yan Xuan ◽  
Jia Liu ◽  
...  

(−)-Epigallocatechin gallate (EGCG), is the main catechin found in green tea, and has several beneficial effects. This study investigated the stability of EGCG aqueous solution under different stored and ultrasonic conditions to determine whether it can be used with an ultrasonic dental scaler to treat periodontal infection. Four concentrations (0.05, 0.1, 0.15, 2 mg/mL) of EGCG aqueous solution were prepared and stored under four different conditions (A: Exposed to neither sunlight nor air, B: Exposed to sunlight, but not air, C: Not exposed to sunlight, but air, D: Exposed to sunlight and air) for two days. The degradation rate of EGCG was measured by high performance liquid chromatography (HPLC). On the other hand, an ultrasonic dental scaler was used to atomize the EGCG solution under four different conditions (a: Exposed to neither air nor sunlight, b: Not exposed to air, but sunlight, c: Not exposed to sunlight, but air, d: Exposed to air and sunlight), the degradation of EGCG was measured by HPLC. We found that the stability of EGCG was concentration-dependent in water at room temperature. Both sunlight and oxygen influenced the stability of EGCG, and oxygen had a more pronounced effect on stability of EGCG than sunlight. The most important conclusion was that the ultrasound may accelerate the degradation of EGCG due to the presence of oxygen and sunlight, but not because of the ultrasonic vibration. Thus, EGCG aqueous solution has the potential to be used through an ultrasonic dental scaler to treat periodontal infection in the future.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Anne-Claire Bonnaure ◽  
Romain Bellay ◽  
Pauline Rault ◽  
Marie-Antoinette Lester ◽  
Pierre-Nicolas Boivin

Abstract Background Prednisone is a corticosteroid used in several inflammatory diseases and cancers. In France, no available prednisone drinkable formulation exists. Instead, an oral syrup of prednisone with ethanol, sodium benzoate and simple syrup is produced. However, sodium benzoate can induce neonatal icterus and alcohol is not authorized for children below 3 years of age. The aim of this study was to determine the stability of 5 mg/mL prednisone oral suspension in a commercial compounding excipient: Syrspend® SF PH4. Methods Three batches of oral suspensions were prepared, using micronized prednisone and Syrspend® SF PH4. They were packaged in amber glass vials and stored at room temperature. On day 0, 1, 4, 10, 30, 60 and 90, we observed physical and chemical stability (pH measurement, osmolality measurement, residual concentrations of prednisone and degradation product identification). A stability indicating method was developed using high performance liquid chromatography with Ultraviolet detection at 254 nm. Results Prednisone concentrations remained stable within ± 5 % of nominal values for 60 days. No degradation product and change of physicochemical properties were detected. Conclusion This study showed that 5 mg/mL prednisone oral suspension in Syrspend® SF PH4 is stable for 60 days, at room temperature and protected from light.


Sign in / Sign up

Export Citation Format

Share Document