scholarly journals Role of nearshore benthic algae in the Lake Michigan silica cycle

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256838
Author(s):  
John A. Berges ◽  
Allison M. Driskill ◽  
Emily J. Guinn ◽  
Kaytee Pokrzywinski ◽  
Jessica Quinlan ◽  
...  

Si cycling is linked with processes from global carbon sequestration to community composition and is especially important in aquatic ecosystems. Lake Michigan has seen dramatic fluctuations in dissolved silica (dSi) over several decades, which have been examined in the context of planktonic processes (diatom blooms), but the role of benthic organisms (macroalgae and their epiphytes) in Si cycling have not been explored. To assess significance of nearshore benthic algae in Si dynamics, we assembled dSi data from an offshore site sampled since the late 1980’s, and sampled off three Milwaukee beaches during 2005–19. Using colorimetric assays and alkaline digestion, we measured dSi, biogenic silica in particulate suspended material (pSi) and biogenic silica in benthic macroalgae (Cladophora) and epiphytic diatoms (bSi). Offshore, dSi increased about 1 μM per year from 25 μM in the late 1980’s to nearly 40 μM in 2019. Nearshore dSi fluctuated dramatically annually, from near zero to concentrations similar to offshore. Both Cladophora and its epiphytes contained significant bSi, reaching up to 30% of dry mass (300 mg Si g dry mass-1) of the assemblage in summer. Microscopic analyses including localization with a Si-specific-stain and X-ray microanalysis showed bSi in epiphytic diatom cells walls, but the nature and localization of Si in macroalgae remained unclear. A simple model was developed estimating Si demand of algae using the areal macroalgal biomass, growth rates inferred from P-content, and bSi content, and comparing Si demand with dSi available in the water column. This indicated that 7–70% of the dSi in water overlying nearshore benthic algal beds could be removed per day. Key elements of the Si cycle, including which organisms sequester bSi and how rapidly Si is recycled, remain unclear. This work has implications for coastal marine waters where large macroalgal biomass accumulates but bSi content is virtually unknown.

1988 ◽  
Vol 45 (2) ◽  
pp. 271-279 ◽  
Author(s):  
Hunter J. Carrick ◽  
Rex L. Lowe

The possibility that benthic algae in the nearshore area of Lake Michigan might be growth limited by Si was tested using nutrient-releasing substrata. Nutrient treatments were Si, N + P, Si + N + P, and controls (CONT) and were sampled after 7, 14, and 31 d of exposure. Addition of Si alone had little stimulatory effect on algal biomass, while enrichment with Si + N + P led to the greatest increase in chlorophyll a, particulate Si, total biovolume, and diatom biovolume after 14 d of incubation (P < 0.0001). By day 31, communities on CONT and Si substrata exhibited little change in biomass and remained dominated by diatoms (98% of total biovolume), while algal biomass on both N + P and Si + N + P substrata increased more than eightfold (P < 0.0001) and consisted mainly of Stigeoclonium tenue (Chlorophyta) and Schizothrix calcicolas (Cyanophyta). These results indicate that benthic diatoms in Lake Michigan are not currently limited by Si, but may become Si limited following enrichment with N + P.


2008 ◽  
Vol 72 (1) ◽  
pp. 85-89 ◽  
Author(s):  
J. R. Leake ◽  
A. L. Duran ◽  
K. E. Hardy ◽  
I. Johnson ◽  
D. J. Beerling ◽  
...  

AbstractBiological weathering is a function of biotic energy expenditure. Growth and metabolism of organisms generates acids and chelators, selectively absorbs nutrient ions, and applies turgor pressure and other physical forces which, in concert, chemically and physically alter minerals. In unsaturated soil environments, plant roots normally form symbiotic mycorrhizal associations with fungi. The plants provide photosynthate-carbohydrate-energy to the fungi in return for nutrients absorbed from the soil and released from minerals. In ectomycorrhiza, one of the two major types of mycorrhiza of trees, roots are sheathed in fungus, and 15—30% of the net photosynthate of the plants passes through these fungi into the soil and virtually all of the water and nutrients taken up by the plants are supplied through the fungi. Here we show that ectomycorrhizal fungi actively forage for minerals and act as biosensors that discriminate between different grain sizes (53—90 μm, 500—1000 μm) and different minerals (apatite, biotite, quartz) to favour grains with a high surface-area to volume ratio and minerals with the highest P content. Growth and carbon allocation of the fungi is preferentially directed to intensively interact with these selected minerals to maximize resource foraging.


Author(s):  
Vanderlise Giongo ◽  
Alessandra M. Salviano ◽  
Betina R. C. dos Santos ◽  
Emylly F. Leal

Phosphorus (P) plays an important role in the growth of root system as well as the tillering grass, being fundamental to increase the productivity of these species. The aim of this study was to evaluate the development of buffel grass cultivars and establish critical values of P in plant and soil. The experimental set up was a 4 x 5 factorial scheme (four Cenchrus ciliaris cvs.: Biloela, Aridus, CPATSA 7754 and Pusa Giant, and five doses of P2O5 - 0, 30, 60, 90 and 120 kg ha-1) with four replications. After 90 days of cultivation, dry mass of shoot (DMS) and root (DMR) production and the P accumulation (Pacc) were determined. Soil samples to determine the P content and determination of the critical level (CriLev) were also collected. The cv. Biloela presented lower DMR and DMS production compared to the other cultivars. The cultivares Biloela, Pusa Giant and Aridus showed different critical levels of P in soil and plant, obtained in the greenhouse showing that they have different requirement of this nutrient for their growth. The cultivar CPATSA 7754 showed higher phosphorus requirement and did not permit to establish critical levels with doses used in the present study.


2014 ◽  
Vol 11 (3) ◽  
pp. 1074-1082
Author(s):  
Baghdad Science Journal

The present study conducted to study epipelic algae in the Tigris River within Baghdad city for one year from September 2011 to August 2012 due to the importance role of benthic algae in lotic ecosystems. Five sites have been chosen along the river. A total of 154 species of epipelic algae was recorded belongs to 45 genera, where Bacillariophyceae (Diatoms) was the dominant groups followed by Cyanophyceae and Chlorophyceae. The numbers of common types in three sites were 47 species. Bacillariophyceae accounted 88.31% of the total number of epipelic algae, followed by Cyanophyceae 7.14 % and Chlorophyceae 4.55%. A 85 species (29 genera) recorded in site 1, 103 species (34 genera) in site2, 112 species (35 genera) in site3, 96 species (32 genera) in site4, and 85 species (29 genera) in site5. Spatial and temporal distributions of epipelic algae were noticed in this study. The higher total number of epipelic algae (91504.01cell cm-2) was recorded at site 5 in spring 2012, while the lower was (37017.98cell cm-2) in summer 2012 at site1. Some genera have recorded higher number species during the study period; these genera were Nitzschia, Navicula, Cymbella, Gomphonema, Synedra, Achnanthes, Oscillatoria, and Lyngbya. The study revealed that Bacillariophyceae were more prominent within all study sites and followed by Cyanophyceae, while a few numbers of Chlorophyceae was appeared.


1986 ◽  
Vol 23 (9) ◽  
pp. 1442-1449 ◽  
Author(s):  
Daniel J. Conley ◽  
Claire L. Schelske ◽  
Brian G. Dempsey ◽  
Charles D. Campbell ◽  
Teresa L. Newberry

The spatial distribution of biogenic silica (BSi) in the surficial sediments of Lake Michigan is described from Shipek grab samples collected in 1975 and gravity cores obtained in 1983. Significantly smaller surficial BSi concentrations in the 1975 samples were attributed primarily to the inability of a Shipek grab to collect intact surficial sediment samples. Lower concentrations o.f BSi were found in nondepositional and transitional areas of sediment accumulation than in depositional basins. Therefore, BSi accumulation is restricted primarily to the 40% of the lake bottom where sediments are presently accumulating. High concentrations found in Green Bay surficial sediments are related to high productivity in the bay coupled with inputs of new silica from the Fox River. In the open lake, BSi concentrations of surficial sediments in depositional basins appeared to vary inversely with sedimentation rate in that lower BSi concentrations were found in areas with higher sedimentation rates.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Dong Liu ◽  
Peng Yuan ◽  
Qian Tian ◽  
Hongchang Liu ◽  
Liangliang Deng ◽  
...  

Abstract Diatoms play an important role in marine biogeochemical cycle of aluminum (Al), as dissolved Al is taken up by diatoms to build their siliceous frustules and is involved in the sedimentation of diatomaceous biogenic silica (BSi). The Al incorporation in BSi facilitates decreasing the dissolution of marine BSi and thus substantially influences the biochemical processes driven by diatoms, such as CO2 sequestration. However, the role of lake BSi in the terrestrial biochemical Al cycle has not been explored, though lakes represent the second-largest sink for BSi. By identifying the previously unexplored high Al/Si atomic ratios (up to 0.052) in lake BSi, here we show lake BSi is a large terrestrial Al pool due to its high Al content, and lake sedimentary BSi constitutes a significant global sink for Al, which is on the same magnitude as the Al sink in global oceans.


Sign in / Sign up

Export Citation Format

Share Document