scholarly journals Elemental composition, rare earths and minority elements in organic and conventional wines from volcanic areas: The Canary Islands (Spain)

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258739
Author(s):  
Pablo Alonso Gonzalez ◽  
Eva Parga-Dans ◽  
Paula Arribas Blázquez ◽  
Octavio Pérez Luzardo ◽  
Manuel Luis Zumbado Peña ◽  
...  

The organic wine market is rapidly growing worldwide, both in terms of production and consumption. However, the scientific literature is not conclusive regarding differences in the elemental composition of wines according to their production method, including both major and trace elements. Minerals can be present in wine as a result of both anthropogenic and environmental factors. To date, this has not been evaluated in volcanic contexts, neither has the emergent issue of rare earths and other minority elements as potential sources of food contamination. This study using inductively coupled plasma mass spectrometry (ICP-MS) analyses organic and conventional wines produced in the Canary Islands (Spain), an archipelago of volcanic origin, to compare their content of 49 elements, including rare earths and minority elements. Our results showed that organic wines presented lower potential toxic element content on average than their conventional counterparts, but differences were not significant. Geographical origin of the wine samples (island) was the only significant variable differentiating wine samples by their composition profiles. By comparing our data with the literature, no agreement was found in terms of differences between organic and conventionally-produced wines. This confirms that other factors prevail over elemental composition when considering differences between wine production methods. Regarding the toxicological profile of the wines, five samples (three organic and two conventional) exceeded the maximum limits established by international legislation. This highlights the need for stricter analytical monitoring in the Canary Islands, with a particular focus on Cu and Ni concentration, and potentially in other volcanic areas.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Izabela Michalak ◽  
Krzysztof Marycz ◽  
Katarzyna Basińska ◽  
Katarzyna Chojnacka

The biomass ofVaucheria sessilisforms algal mats in many freshwaters. There is a need to find the method of algal biomass utilization.Vaucheria sessilisis a rich source of micro- and macronutrients and can be used as a soil amendment. In the paper, the elemental composition of enriched, via bioaccumulation process, macroalga was investigated. For this purpose, two independent techniques were used: scanning electron microscopy with an energy dispersive X-ray analytical system (SEMEDX) and inductively coupled plasma optical emission spectroscopy (ICP-OES). The biomass was exposed to two microelemental solutions, with Cu(II) and Zn(II) ions. After two weeks of the experiment, macroalga accumulated 98.5 mg of Zn(II) ions in 1 g of dry biomass and 68.9 mg g−1of Cu(II) ions. Micrographs performed by SEM proved that bioaccumulation occurred. Metal ions were bound on the surface and in the interior of cells. Mappings of all cations showed that in the case of the surface of biomass (biosorption), the elements constituted aggregations and in the case of the cross section (bioaccumulation) they were evenly distributed. The algal biomass with permanently bound microelements can find an application in many branches of the industry (feed, natural fertilizers, etc.).


Minerals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 439 ◽  
Author(s):  
Egidio Marino ◽  
Francisco Javier González ◽  
Thomas Kuhn ◽  
Pedro Madureira ◽  
Anna V. Wegorzewski ◽  
...  

Four pure hydrogenetic, mixed hydrogenetic-diagenetic and hydrogenetic-hydrothermal Fe-Mn Crusts from the Canary Islands Seamount Province have been studied by Micro X-Ray Diffraction, Raman and Fourier-transform infrared spectroscopy together with high resolution Electron Probe Micro Analyzer and Laser Ablation Inductively Coupled Plasma Mass Spectrometry in order to find the correlation of mineralogy and geochemistry with the three genetic processes and their influence in the metal recovery rate using an hydrometallurgical method. The main mineralogy and geochemistry affect the contents of the different critical metals, diagenetic influenced crusts show high Ni and Cu (up to 6 and 2 wt. %, respectively) (and less Co and REY) enriched in very bright laminae. Hydrogenetic crusts on the contrary show High Co and REY (up to 1 and 0.5 wt. %) with also high contents of Ni, Mo and V (average 2500, 600 and 1300 μg/g). Finally, the hydrothermal microlayers from crust 107-11H show their enrichment in Fe (up to 50 wt. %) and depletion in almost all the critical elements. One hydrometallurgical method has been used in Canary Islands Seamount Province crusts in order to quantify the recovery rate of valuable elements in all the studied crusts except the 107-11H, whose hydrothermal critical metals’ poor lamina were too thin to separate from the whole crust. Digestion treatment with hydrochloric acid and ethanol show a high recovery rate for Mn (between 75% and 81%) with respect to Fe (49% to 58%). The total recovery rate on valuable elements (Co, Ni, Cu, V, Mo and rare earth elements plus yttrium (REY)) for the studied crusts range between 67 and 92% with the best results for Co, Ni and V (up to 80%). The genetic process and the associated mineralogy seem to influence the recovery rate. Mixed diagenetic/hydrogenetic crust show the lower recovery rate for Mn (75%) and Ni (52.5%) both enriched in diagenetic minerals (respectively up to 40 wt. % and up to 6 wt. %). On the other hand, the presence of high contents of undigested Fe minerals (i.e., Mn-feroxyhyte) in hydrogenetic crusts give back low recovery rate for Co (63%) and Mo (42%). Finally, REY as by-product elements, are enriched in the hydrometallurgical solution with a recovery rate of 70–90% for all the studied crusts.


Author(s):  
Luana C. S. Leite ◽  
Elaine S. de P. Melo ◽  
Daniela G. Arakaki ◽  
Elisvânia F. dos Santos ◽  
Valter A. do Nascimento

Data on the content of metals and metalloids in roasted meats with different types of wood and charcoal are still scarce in the literature. The concentrations of metals (Al, Cr, Cd, Cu, Fe, Mg, Mn, Mo, Ni, V, and Zn) and metalloid (As) were determined by inductively coupled plasma mass spectrometry (ICP-OES) after microwave digestion, and the estimated daily intake (EDI) for adults was assessed to determine the hazard quotient (HQ). The concentrations of Al, Cr, Cu, and Fe in raw meats were below the data obtained in other countries. The concentration of As (0.17 ± 0.42–0.23 ± 0.10 mg/kg), Mg (206.77 ± 3.99–291.95 ± 8.87 mg/kg), V (0.42 ± 0.14–6.66 ± 0.80 mg/kg), and Zn (6.66 ± 0.80–48.13 ± 0.56 mg/kg) in raw meats exceeded the values in the literature. The concentrations of Mg, As, Cr, Fe, V, and Zn are high when the meat is roasted using wood. All levels of Al, As, Cr, Cu, Fe, Mg, Mn, Mo, V, and Zn in raw meats are lower than those of meat roasted with coal and wood. The content of As in meat roasted with Chromed Copper Arsenate (CCA) wood (15.10 ± 0.27–26.25 ± 1.47 mg/kg) is higher than meat roasted with charcoal (0.46 ± 0.09–1.16 ± 0.50 mg/kg). EDI and HQ values revealed a minimal exposure of the adult population to those metals through roasted-meats consumption. However, EDI values of As in some roasted meats are above standard limits. Roast meats with wood showed higher levels of major and trace elements than meats roasted with coal. High exposures, in the long-term, may cause damage to health.


2019 ◽  
Vol 12 ◽  
pp. 02034
Author(s):  
J.E. Herbert-Pucheta ◽  
Q.U. Ortega ◽  
L.G. Zepeda-Vallejo ◽  
D. Milmo-Brittingham ◽  
G.P. Maya ◽  
...  

Since 1953, The World Organization of Vine and Wine (OIV) Member States have reduced the lead maximum limits (ML) in wines, down to 0.05 mg/L (2018). Evidently, this ML value is too restrictive for wine industry as it excludes from international market a significant portion of wine production. Currently, the Codex Committee on Contaminants in Foods and OIV had recognized the value of gathering robust and novel data to better assess the best lowest ML for wine industry. Currently, there is not a direct statement within international reference documents, of which chemical form of lead must be controlled and/ or reduced. This work presents for the first time a method combining Energy Dispersive X-Ray analysis (EDAX) and Nuclear Magnetic Resonance (NMR) spectroscopies in order to determine presence and concentrations of major and trace elements of lead and other element moieties in wine that can allow to better redefine lead's ML. By identification of K, L, M, radiation shells with additional αβi labelling of lead's major and minor components with semi-quantitative XRF, combined with chemical-shift analysis of inorganic Pb4+, Pb2+ and/or organo-lead within wine samples, we propose a full discrimination framework to disentangle and quantify different chemical forms of lead.


2009 ◽  
Vol 79-82 ◽  
pp. 989-992 ◽  
Author(s):  
Bin Zhang ◽  
Xiao Ning Tang ◽  
Gang Xie ◽  
Su Qiong He ◽  
Yang Dong

In this study, we synthesized a new inorganic antibacterial material, of which Cu2+ was selected to be the antibacterial ion, cerous nitrate served as the additives, and the white carbon black was chosen as the carrier, which was prepared by a sol-gel method. The as-synthesized antibacterial material was characterized by inductively coupled plasma, particle size measurement instrument, scanning electron microscope and enumeration tests. The result showed that the amount of antibacterial ions and bacteriostasis rate of this new material are higher than those for the common Cu-inorganic antibacterial material without rare earths. In addition, the particle size of this material can be extended down to 20 μm with a narrow size distribution. Other advantages of this material are its loose and dispersive structure.


2020 ◽  
Author(s):  
Alessandro Musu ◽  
Luca Caricchi ◽  
Diego Perugini ◽  
Rosa Anna Corsaro ◽  
Francesco Vetere ◽  
...  

<p>Magma reservoirs are characterized by thermal and chemical gradients producing large variations of the spatial distribution of the physical properties of the magma they contain. Understanding the pre-eruptive thermal, chemical and physical evolution of magma represents an important step to correctly interpret the signs of an impending eruption. In this framework, the chemical zoning of minerals, which provide us a record of these thermal and chemical perturbations, represents an important tool to reconstruct reservoir dynamics. We study the effect of the competition between changing intensive parameters, element diffusion and mineral growth on the chemical zoning of minerals. We grow chemical zoned minerals at the Petro-Volcanology Research Group of the University of Perugia, using tephra from 2002-03 Mt. Etna eruption as starting material. The zonation in minerals is been forced inside a high-temperature furnace by oscillating the temperature under three different conditions: static conditions, using a controlled deformation gradient (concentric cylinder apparatus) and using a chaotic mixing regime (Chaotic Magma Mixing Device – CMMD). We collect major and trace elements distribution maps on a large number of crystals using Electron Probe Micro Analyzer (EPMA) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), respectively. The data will be analysed using a series of custom built machine learning algorithms to disentangle zoning related to variations of the thermodynamic conditions of crystal growth from the effects of the competition between diffusion and growth. Our data will help deciphering the zoning patterns observed in natural crystals, improve our understanding of magma reservoir dynamics and help the interpretation of monitoring signals in the period preceding a volcanic eruption.</p>


Sign in / Sign up

Export Citation Format

Share Document