scholarly journals Importance of natural land cover for plant species’ conservation: A nationwide study in The Netherlands

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259255
Author(s):  
Kaixuan Pan ◽  
Merijn Moens ◽  
Leon Marshall ◽  
Ellen Cieraad ◽  
Geert R. de Snoo ◽  
...  

While shifts to high-intensity land cover have caused overwhelming biodiversity loss, it remains unclear how important natural land cover is to the occurrence, and thus the conservation, of different species groups. We used over 4 million plant species’ observations to evaluate the conservation importance of natural land cover by its association with the occurrence probability of 1 122 native and 403 exotic plant species at 1 km resolution by species distribution models. We found that 74.9% of native species, 83.9% of the threatened species and 77.1% rare species preferred landscapes with over 50% natural land cover, while these landscapes only accounted for 15.6% of all grids. Most species preferred natural areas with a mixture of forest and open areas rather than areas with completely open or forested nature. Compared to native species, exotic species preferred areas with lower natural land cover and the cover of natural open area, but they both preferred extremely high and low cover of natural forest area. Threatened and rare species preferred higher natural land cover, either cover of natural forest area or cover of natural open area than not threatened and common species, but rare species were also more likely to occur in landscapes with 0–25% cover of natural open area. Although more natural land cover in a landscape will not automatically result in more native species, because there is often a non-linear increase in species occurrence probability when going from 0% to 100% natural land cover, for conserving purposes, over 80% natural land cover should be kept in landscapes for conserving threatened and very rare species, and 60% natural land cover is the best for conserving common native species. Our results stress the importance of natural areas for plant species’ conservation. It also informs improvements to species conservation by increasing habitat diversity.

2021 ◽  
Author(s):  
Ingmar Staude ◽  
Josiane Segar ◽  
Corey Thomas Callaghan ◽  
Emma Ladouceur ◽  
Jasper Meya ◽  
...  

Global commitments to species conservation have failed to halt systematic widespread declines in plant species. Current policy interventions, such as protected areas and legal species legislation, remain insufficient, and there is an urgent need to engage novel approaches and actors in conservation. Here, we propose that urban conservation gardening, namely the cultivation of declining native plant species in public and private green spaces, can be one such approach. Conservation gardening can address key (a)biotic drivers of species decline, act as a critical dispersal pathway and increase the occupancy of declining native species. We identify policy mechanisms to upscale conservation gardening to a mainstream activity by reforming the existing horticultural market into an innovative nature protection instrument. This involves incentivizing the integration of the native seed sector, leveraging existing certification and labelling schemes, promoting consumer access, as well as building citizen-science projects to foster public engagement. Mainstreamed conservation gardening can be an economically viable, sustainable, and participatory measure that complements traditional approaches to plant conservation.


2018 ◽  
Vol 85 ◽  
pp. 21-36 ◽  
Author(s):  
Reshma M. Ramachandran ◽  
Parth Sarathi Roy ◽  
V. Chakravarthi ◽  
J. Sanjay ◽  
Pawan K. Joshi

NeoBiota ◽  
2020 ◽  
Vol 58 ◽  
pp. 55-74
Author(s):  
Marija Milanović ◽  
Sonja Knapp ◽  
Petr Pyšek ◽  
Ingolf Kühn

The success of alien plant species can be attributed to differences in functional traits compared to less successful aliens as well as to native species, and thus their adaptation to environmental conditions. Studies have shown that alien (especially invasive) plant species differ from native species in traits such as specific leaf area (SLA), height, seed size or flowering period, where invasive species showed significantly higher values for these traits. Different environmental conditions, though, may promote the success of native or alien species, leading to competitive exclusion due to dissimilarity in traits between the groups. However, native and alien species can also be similar, with environmental conditions selecting for the same set of traits across species. So far, the effect of traits on invasion success has been studied without considering environmental conditions. To understand this interaction we examined the trait–environment relationship within natives, and two groups of alien plant species differing in times of introduction (archaeophytes vs. neophytes). Further, we investigated the difference between non-invasive and invasive neophytes. We analyzed the relationship between functional traits of 1,300 plant species occurring in 1000 randomly selected grid-cells across Germany and across different climatic conditions and land-cover types. Our results show that temperature, precipitation, the proportion of natural habitats, as well as the number of land-cover patches and geological patches affect archaeophytes and neophytes differently, regarding their level of urbanity (in neophytes negative for all non-urban land covers) and self-pollination (mainly positive for archaeophytes). Similar patterns were observed between non-invasive and invasive neophytes, where additionally, SLA, storage organs and the beginning of flowering were strongly related to several environmental factors. Native species did not express any strong relationship between traits and environment, possibly due to a high internal heterogeneity within this group of species. The relationship between trait and environment was more pronounced in neophytes compared to archaeophytes, and most pronounced in invasive plants. The alien species at different stages of the invasion process showed both similarities and differences in terms of the relationship between traits and the environment, showing that the success of introduced species is context-dependent.


2021 ◽  
Vol 16 (2) ◽  
pp. 113-127
Author(s):  
Hanifah Ikhsani ◽  
Azwin Azwin ◽  
Muhammad Ikhwan

Forest Area with Special Purposes (KHDTK) Buluh Cina requires a land suitability analysis so that the development of plant species can be carried out optimally. This study aims to map land units and determine land suitability classes. This study uses aerial photography to classify land cover and take soil samples. Furthermore, overlay analysis and species matching were carried out for 7 types of plants including durian, rambutan, sengon, mango, cacao, pineapple, and corn. The land suitability class is divided into 4 levels namely, very suitable (S1), suitable (S2), marginally suitable (S3), and not suitable (N). Based on the results, the actual land suitability class at KHDTK Buluh Cina class S1 was rambutan at SPL I and III. Land suitability class S2 is rambutan at SPL II and IV. S3 land suitability classes are durian, sengon, mango, cocoa, pineapple, and corn in SPL I, II, III, and IV. The potential land suitability class at KHDTK Buluh Cina class S1 is rambutan at SPL I, II, III and IV. Land suitability class S2 is durian, sengon, and cocoa at SPL I, II, III, and IV. S3 land suitability class is mango, pineapple, and corn in SPL I, II, III, and IV.


2020 ◽  
Vol 28 (4) ◽  
pp. 241-249
Author(s):  
Cleverton da Silva ◽  
Arleu Barbosa Viana-Junior ◽  
Cristiano Schetini de Azevedo ◽  
Juliano Ricardo Fabricante

2021 ◽  
Vol 232 (7) ◽  
Author(s):  
N. Matanzas ◽  
E. Afif ◽  
T. E. Díaz ◽  
J. R. Gallego

AbstractPhytomanagement techniques using native species allow the recovery of contaminated soils at low cost and circumvent the ecological risks associated with the use of non-native species. In this context, a paradigmatic brownfield megasite highly contaminated by As and Pb was sampled in order to analyze soil–plant interactions and identify plant species with phytoremediation potential. A survey was first carried out in a 20-ha area to obtain an inventory of species growing spontaneously throughout the site. We then performed another survey in the most polluted sub-area (1 ha) within the site. Pseudototal concentrations of contaminants in the soil, aerial parts of the plants, and roots were measured by ICP-MS. A detailed habitat classification was done, and a specific index of coverage was applied by means of a 1-year quadrat study in various sampling stations. Results converged in the selection of six herbaceous species (Dysphania botrys, Lotus corniculatus, Lotus hispidus, Plantago lanceolata, Trifolium repens, Medicago lupulina). All of these plants are fast-growing, thereby making them suitable for use in phytostabilization strategies. Furthermore, they are all easy to grow and propagate and are generally self-sustaining. All six plants showed accumulation factors below 1, thus revealing them as pseudomethallophytes and excluders. However, L. hispidus and M. lupulina showed translocation capacity and are considered worthy of further study.


2017 ◽  
Vol 9 (4) ◽  
pp. 86 ◽  
Author(s):  
Cristina A. Gómez-Moya ◽  
Talita P. S. Lima ◽  
Elisângela G. F. Morais ◽  
Manoel G. C. Gondim Jr. ◽  
Gilberto J. De Moraes

The expansion of red palm mite (RPM), Raoiella indica (Acari: Tenuipalpidae) in Brazil could impact negatively the native plant species, especially of the family Arecaceae. To determine which species could be at risk, we investigated the development and reproductive potential of R. indica on 19 plant species including 13 native species to the Brazilian Amazon (12 Arecaceae and one Heliconiaceae), and six exotic species, four Arecaceae, a Musaceae and a Zingiberaceae. Values of the instantaneous rate of increase (ri) were initially estimated at 7, 14, 21 and 28 days after infestation of each species. Higher values of ri (> 0.05) were determined on the Arecaceae Adonidia merrillii, Astrocaryum jauari, Cocos nucifera, Bactris simplicifrons, Mauritia flexuosa, Phoenix dactylifera and Socratea exorrhiza, and on the Heliconiaceae Heliconia psittacorum Sassy; these were classified as “potential primary hosts”. Lower, but still positive values of ri (0-0.05) were determined on the Arecaceae Bactris maraja, Oenocarpus bacaba, Oenocarpus bataua and on the Musaceae Musa × paradisiaca (Prata variety); these were classified as “potential secondary hosts”. Negative values of ri were determined for the remaining plants, i.e., the Arecaceae Astrocaryum aculeatum, Attalea maripa, Bactris gasipaes, Elaeis guineensis, Euterpe oleracea, Euterpe precatoria, and the Zingiberaceae Alpinia rosea; these were considered “non-hosts”. Species with ri < 0.05 were considered not to be threatened by the RPM. Biological parameters of RPM were evaluated on the plant species with positive ri (except B. maraja) and two native species with negative ri (E. oleracea and E. precatoria). Mean developmental time ranged from 14.7 days on C. nucifera to 21.4 days on Musa × paradisiaca, showing a significant influence of the plant substrate. Immature viability, oviposition rate, net reproductive rate (R0) and intrinsic rate of increase (rm) were affected by the plant species.


2016 ◽  
Vol 39 (4) ◽  
pp. 309-315
Author(s):  
Ajithakumari Anusree ◽  
Puthiya Karunakaran ◽  
Narayanaswamy Parthasarathy

Studied on the effect of adult tree density and the proximity to the natural forest on restoration success in one of the most exploited tropical deciduous forests, Attappady, Western Ghats. Random quadrats were laid and surveyed for trees and saplings in remnant tropical deciduous forest patches (hereafter called as fragmented forest and the sites being restored here after called as restoration patches) to determine floristic composition, species turnover among sites and the influence of adult tree density on sapling density. Forests composed of deciduous and evergreen trees with an average species richness of 28 and alpha diversity of 2.671 in a 0.2 ha plot. Similarity of restoration patches with natural forest increased as distance between them decreased and regeneration of native species were more efficient in sites with more number of adult trees. Local (adult tree density) and landscape level (isolation of patches) factors are both important in determining the restoration success of deciduous forests of Attappady.


2008 ◽  
Vol 45 (2) ◽  
pp. 680-687 ◽  
Author(s):  
David Kleijn ◽  
Renée M. Bekker ◽  
Roland Bobbink ◽  
Maaike C. C. De Graaf ◽  
Jan G. M. Roelofs

Sign in / Sign up

Export Citation Format

Share Document