scholarly journals Serum levels of NLRC4 and MCP-2/CCL8 in patients with active Crohn’s disease

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260034
Author(s):  
Kader Irak ◽  
Mehmet Bayram ◽  
Sami Cifci ◽  
Gulsen Sener

Crohn’s disease (CD) is characterized by malfunction of immune-regulatory mechanisms with disturbed intestinal mucosal homeostasis and increased activation of mucosal immune cells, leading to abnormal secretion of numerous pro- and anti-inflammatory mediators. MCP2/CCL8 is produced by intestinal epithelial cells and macrophages, and is a critical regulator of mucosal inflammation. NLRC4 is expressed in phagocytes and intestinal epithelial cells and is involved in intestinal homeostasis and host defense. However, no study to date has assessed the circulating levels of NLRC4 and MCP2/CCL8 in patients with CD. The study was aimed to investigate the serum levels of MCP2/CCL8 and NLRC4 in patients with active CD. Sixty-nine patients with active CD and 60 healthy participants were included in the study. Serum levels of NLRC4 and MCP2/CCL8 were determined using an enzyme-linked immunosorbent assay. The median serum NLRC4 levels were lower in the patient group than in the controls (71.02 (range, 46.59–85.51) pg/mL vs. 99.43 (range 83.52–137.79) pg/mL) (P < 0.001). The median serum levels of MCP2/CCL8 were decreased in patients with CD (28.68 (range, 20.16–46.0) pg/mL) compared with the controls (59.96 (range, 40.22–105.59) pg/mL) (P < 0.001). Cut-off points of NLRC4 (<81 pg/mL) and MCP2/CCL8 (<40 pg/mL) showed high sensitivity and specificity for identifying active CD. In conclusion, this is the first study to examine circulating levels of MCP2/CCL8 and NLRC4 in patients with active CD. Our results suggest that serum NLRC4 and MCP2/CCL8 levels may be involved in the pathogenesis of CD and may have a protective effect on intestinal homeostasis and inflammation. Serum levels of MCP2/CCL8 and NLRC4 could be used as a diagnostic tool and therapeutic target for CD.

Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1104 ◽  
Author(s):  
Dolores Ortiz-Masiá ◽  
Laura Gisbert-Ferrándiz ◽  
Cristina Bauset ◽  
Sandra Coll ◽  
Céline Mamie ◽  
...  

The pathogenesis of Crohn’s disease-associated fibrostenosis and fistulas imply the epithelial-to-mesenchymal transition (EMT) process. As succinate and its receptor (SUCNR1) are involved in intestinal inflammation and fibrosis, we investigated their relevance in EMT and Crohn’s disease (CD) fistulas. Succinate levels and SUCNR1-expression were analyzed in intestinal resections from non-Inflammatory Bowel Disease (non-IBD) subjects and CD patients with stenosing-B2 or penetrating-B3 complications and in a murine heterotopic-transplant model of intestinal fibrosis. EMT, as increased expression of Snail1, Snail2 and vimentin and reduction in E-cadherin, was analyzed in tissues and succinate-treated HT29 cells. The role played by SUCNR1 was studied by silencing its gene. Succinate levels and SUCNR1 expression are increased in B3-CD patients and correlate with EMT markers. SUCNR1 is detected in transitional cells lining the fistula tract and in surrounding mesenchymal cells. Grafts from wild type (WT) mice present increased succinate levels, SUCNR1 up-regulation and EMT activation, effects not observed in SUCNR1−/− tissues. SUCNR1 activation induces the expression of Wnt ligands, activates WNT signaling and induces a WNT-mediated EMT in HT29 cells. In conclusion, succinate and its receptor are up-regulated around CD-fistulas and activate Wnt signaling and EMT in intestinal epithelial cells. These results point to SUCNR1 as a novel pharmacological target for fistula prevention.


2007 ◽  
Vol 189 (13) ◽  
pp. 4860-4871 ◽  
Author(s):  
Marie-Agnès Bringer ◽  
Nathalie Rolhion ◽  
Anne-Lise Glasser ◽  
Arlette Darfeuille-Michaud

ABSTRACT Adherent-invasive Escherichia coli (AIEC) isolated from Crohn's disease patients is able to adhere to and invade intestinal epithelial cells and to replicate in mature phagolysosomes within macrophages. Here, we show that the dsbA gene, encoding a periplasmic oxidoreductase, was required for AIEC strain LF82 to adhere to intestinal epithelial cells and to survive within macrophages. The LF82-ΔdsbA mutant did not express flagella and, probably as a consequence of this, did not express type 1 pili. The role of DsbA in adhesion is restricted to the loss of flagella and type 1 pili, as forced contact between bacteria and cells and induced expression of type 1 pili restored the wild-type phenotype. In contrast, the dsbA gene is essential for AIEC LF82 bacteria to survive within macrophages, irrespective of the loss of flagella and type 1 pilus expression, and the survival ability of LF82-ΔdsbA was as low as that of the nonpathogenic E. coli K-12, which was efficiently killed by macrophages. We also provide evidence that the dsbA gene is needed for LF82 bacteria to grow and survive in an acidic and nutrient-poor medium that partly mimics the harsh environment of the phagocytic vacuole. In addition, under such stress conditions dsbA transcription is highly up-regulated. Finally, the CpxRA signaling pathway does not play a role in regulation of dsbA expression in AIEC LF82 bacteria under conditions similar to those of mature phagolysosomes.


2005 ◽  
Vol 71 (6) ◽  
pp. 2880-2887 ◽  
Author(s):  
Isabelle Ingrassia ◽  
Antony Leplingard ◽  
Arlette Darfeuille-Michaud

ABSTRACT Ileal lesions in 36.4% of patients with Crohn's disease are colonized by pathogenic adherent-invasive Escherichia coli. The aim of this study was to determine the in vitro inhibitory effects of the probiotic strain, Lactobacillus casei DN-114 001, on adhesion to and invasion of human intestinal epithelial cells by adherent-invasive E. coli isolated from Crohn's disease patients. The experiments were performed with undifferentiated Intestine-407 cells and with undifferentiated or differentiated Caco-2 intestinal epithelial cells. Bacterial adhesion to and invasion of intestinal epithelial cells were assessed by counting CFU. The inhibitory effects of L. casei were determined after coincubation with adherent-invasive E. coli or after preincubation of intestinal cells with L. casei prior to infection with adherent-invasive E. coli. Inhibitory effects of L. casei on adherent-invasive E. coli adhesion to differentiated and undifferentiated intestinal epithelial cells reached 75% to 84% in coincubation and 43% to 62% in preincubation experiments, according to the cell lines used. Addition of L. casei culture supernatant to the incubation medium increased L. casei adhesion to intestinal epithelial cells and enhanced the inhibitory effects of L. casei. The inhibitory effects on E. coli invasion paralleled those on adhesion. This effect was not due to a bactericidal effect on adherent-invasive E. coli or to a cytotoxic effect on epithelial intestinal cells. As Lactobacillus casei DN-114 001 strongly inhibits interaction of adherent-invasive E. coli with intestinal epithelial cells, this finding suggests that the probiotic strain could be of therapeutic value in Crohn's disease.


Sign in / Sign up

Export Citation Format

Share Document