scholarly journals T cells in the brain enhance neonatal mortality during peripheral LCMV infection

2021 ◽  
Vol 17 (1) ◽  
pp. e1009066
Author(s):  
Laurie L. Kenney ◽  
Erik P. Carter ◽  
Anna Gil ◽  
Liisa K. Selin

In adult mice the severity of disease from viral infections is determined by the balance between the efficiency of the immune response and the magnitude of viral load. Here, the impact of this dynamic is examined in neonates. Newborns are highly susceptible to infections due to poor innate responses, lower numbers of T cells and Th2-prone immune responses. Eighty-percent of 7-day old mice, immunologically equivalent to human neonates, succumbed to extremely low doses (5 PFU) of the essentially non-lethal lymphocytic choriomeningitis virus (LCMV-Armstrong) given intraperitoneally. This increased lethality was determined to be dependent upon poor early viral control, as well as, T cells and perforin as assessed in knockout mice. By day 3, these neonatal mice had 400-fold higher viral loads as compared to adults receiving a 10,000-fold (5X104 PFU) higher dose of LCMV. The high viral load in combination with the subsequent immunological defect of partial CD8 T cell clonal exhaustion in the periphery led to viral entry and replication in the brain. Within the brain, CD8 T cells were protected from exhaustion, and thus were able to mediate lethal immunopathology. To further delineate the role of early viral control, neonatal mice were infected with Pichinde virus, a less virulent arenavirus, or LCMV was given to pups of LCMV-immune mothers. In both cases, peak viral load was at least 29-fold lower, leading to functional CD8 T cell responses and 100% survival.

2020 ◽  
Vol 94 (8) ◽  
Author(s):  
Taryn E. Mockus ◽  
Colleen S. Netherby-Winslow ◽  
Hannah M. Atkins ◽  
Matthew D. Lauver ◽  
Ge Jin ◽  
...  

ABSTRACT JC polyomavirus (JCPyV), a human-specific virus, causes the aggressive brain-demyelinating disease progressive multifocal leukoencephalopathy (PML) in individuals with depressed immune status. The increasing incidence of PML in patients receiving immunotherapeutic and chemotherapeutic agents creates a pressing clinical need to define biomarkers to stratify PML risk and develop anti-JCPyV interventions. Mouse polyomavirus (MuPyV) CNS infection causes encephalopathology and may provide insight into JCPyV-PML pathogenesis. Type I, II, and III interferons (IFNs), which all signal via the STAT1 transcription factor, mediate innate and adaptive immune defense against a variety of viral infections. We previously reported that type I and II IFNs control MuPyV infection in non-central nervous system (CNS) organs, but their relative contributions to MuPyV control in the brain remain unknown. To this end, mice deficient in type I, II, or III IFN receptors or STAT1 were infected intracerebrally with MuPyV. We found that STAT1, but not type I, II, or III IFNs, mediated viral control during acute and persistent MuPyV encephalitis. Mice deficient in STAT1 also developed severe hydrocephalus, blood-brain barrier permeability, and increased brain infiltration by myeloid cells. CD8 T cell deficiency alone did not increase MuPyV infection and pathology in the brain. In the absence of STAT1 signaling, however, depletion of CD8 T cells resulted in lytic infection of the choroid plexus and ependymal lining, marked meningitis, and 100% mortality within 2 weeks postinfection. Collectively, these findings indicate that STAT1 signaling and CD8 T cells cocontribute to controlling MuPyV infection in the brain and CNS injury. IMPORTANCE A comprehensive understanding of JCPyV-induced PML pathogenesis is needed to define determinants that predispose patients to PML, a goal whose urgency is heightened by the lack of anti-JCPyV agents. A handicap to achieving this goal is the lack of a tractable animal model to study PML pathogenesis. Using intracerebral inoculation with MuPyV, we found that MuPyV encephalitis in wild-type mice causes an encephalopathy, which is markedly exacerbated in mice deficient in STAT1, a molecule involved in transducing signals from type I, II, and III IFN receptors. CD8 T cell deficiency compounded the severity of MuPyV neuropathology and resulted in dramatically elevated virus levels in the CNS. These findings demonstrate that STAT1 signaling and CD8 T cells concomitantly act to mitigate MuPyV-encephalopathy and control viral infection.


Blood ◽  
2011 ◽  
Vol 117 (19) ◽  
pp. 5123-5132 ◽  
Author(s):  
Som G. Nanjappa ◽  
Eui Ho Kim ◽  
M. Suresh

AbstractViral persistence during chronic viral infections is associated with a progressive loss of T-cell effector function called functional exhaustion. There is therefore a need to develop immunotherapies to remediate the functional deficits of T cells during these infections. We investigated the immunotherapeutic effects of IL-7 during chronic lymphocytic choriomeningitis virus infection in mice. Our results showed that the effects of IL-7 on T cells depend on the viral load, timing, and duration of treatment during the course of the infection. We document that the effectiveness of IL-7 was constrained by high viral load early in the infection, but treatment for at least 3 weeks during declining viral titers mitigated the programmed contraction of CD8 T cells, markedly enhanced the number of high-quality polyfunctional virus-specific CD8 T cells with a nonexhausted phenotype, and accelerated viral control. Mechanistically, the enhancement of CD8 T-cell responses by IL-7 was associated with increased proliferation and induction of Bcl-2, but not with altered levels of PD-1 or Cbl-b. In summary, our results strongly suggest that IL-7 therapy is a potential strategy to bolster the quality and quantity of T-cell responses in patients with chronic viral infections.


2011 ◽  
Vol 209 (1) ◽  
pp. 77-91 ◽  
Author(s):  
Chao Wang ◽  
Ann J. McPherson ◽  
R. Brad Jones ◽  
Kim S. Kawamura ◽  
Gloria H.Y. Lin ◽  
...  

The signaling adaptor TNFR-associated factor 1 (TRAF1) is specifically lost from virus-specific CD8 T cells during the chronic phase of infection with HIV in humans or lymphocytic choriomeningitis virus (LCMV) clone 13 in mice. In contrast, TRAF1 is maintained at higher levels in virus-specific T cells of HIV controllers or after acute LCMV infection. TRAF1 expression negatively correlates with programmed death 1 expression and HIV load and knockdown of TRAF1 in CD8 T cells from viral controllers results in decreased HIV suppression ex vivo. Consistent with the desensitization of the TRAF1-binding co-stimulatory receptor 4-1BB, 4-1BBL–deficient mice have defects in viral control early, but not late, in chronic infection. TGFβ induces the posttranslational loss of TRAF1, whereas IL-7 restores TRAF1 levels. A combination treatment with IL-7 and agonist anti–4-1BB antibody at 3 wk after LCMV clone 13 infection expands T cells and reduces viral load in a TRAF1-dependent manner. Moreover, transfer of TRAF1+ but not TRAF1− memory T cells at the chronic stage of infection reduces viral load. These findings identify TRAF1 as a potential biomarker of HIV-specific CD8 T cell fitness during the chronic phase of disease and a target for therapy.


2005 ◽  
Vol 79 (14) ◽  
pp. 8960-8968 ◽  
Author(s):  
E. John Wherry ◽  
Joseph N. Blattman ◽  
Rafi Ahmed

ABSTRACT Therapeutic vaccination has the potential to boost immune responses and enhance viral control during chronic infections. However, many therapeutic vaccination approaches have fallen short of expectations, and effective boosting of antiviral T-cell responses is not always observed. To examine these issues, we studied the impact of therapeutic vaccination, using a murine model of chronic infection with lymphocytic choriomeningitis virus (LCMV). Our results demonstrate that therapeutic vaccination using a recombinant vaccinia virus expressing the LCMV GP33 CD8 T-cell epitope can be effective at accelerating viral control. However, mice with lower viral loads at the time of vaccination responded better to therapeutic vaccination than did those with high viral loads. Also, the proliferative potential of GP33-specific CD8 T cells from chronically infected mice was substantially lower than that of GP33-specific memory CD8 T cells from mice with immunity to LCMV, suggesting that poor T-cell expansion may be an important reason for suboptimal responses to therapeutic vaccination. Thus, our results highlight the potential positive effects of therapeutic vaccination on viral control during chronic infection but also provide evidence that a high viral load at the time of vaccination and the low proliferative potential of responding T cells are likely to limit the effectiveness of therapeutic vaccination.


2005 ◽  
Vol 79 (15) ◽  
pp. 9419-9429 ◽  
Author(s):  
Nicole E. Miller ◽  
Jennifer R. Bonczyk ◽  
Yumi Nakayama ◽  
M. Suresh

ABSTRACT Although it is well documented that CD8 T cells play a critical role in controlling chronic viral infections, the mechanisms underlying the regulation of CD8 T-cell responses are not well understood. Using the mouse model of an acute and chronic lymphocytic choriomeningitis virus (LCMV) infection, we have examined the relative importance of peripheral T cells and thymic emigrants in the elicitation and maintenance of CD8 T-cell responses. Virus-specific CD8 T-cell responses were compared between mice that were either sham thymectomized or thymectomized (Thx) at ∼6 weeks of age. In an acute LCMV infection, thymic deficiency did not affect either the primary expansion of CD8 T cells or the proliferative renewal and maintenance of virus-specific lymphoid and nonlymphoid memory CD8 T cells. Following a chronic LCMV infection, in Thx mice, although the initial expansion of CD8 T cells was normal, the contraction phase of the CD8 T-cell response was exaggerated, which led to a transient but striking CD8 T-cell deficit on day 30 postinfection. However, the virus-specific CD8 T-cell response in Thx mice rebounded quickly and was maintained at normal levels thereafter, which indicated that the peripheral T-cell repertoire is quite robust and capable of sustaining an effective CD8 T-cell response in the absence of thymic output during a chronic LCMV infection. Taken together, these findings should further our understanding of the regulation of CD8 T-cell homeostasis in acute and chronic viral infections and might have implications in the development of immunotherapy.


2018 ◽  
Vol 92 (8) ◽  
Author(s):  
E. Kip ◽  
J. Staal ◽  
L. Verstrepen ◽  
H. G. Tima ◽  
S. Terryn ◽  
...  

ABSTRACTMALT1 is involved in the activation of immune responses, as well as in the proliferation and survival of certain cancer cells. MALT1 acts as a scaffold protein for NF-κB signaling and a cysteine protease that cleaves substrates, further promoting the expression of immunoregulatory genes. Deregulated MALT1 activity has been associated with autoimmunity and cancer, implicating MALT1 as a new therapeutic target. Although MALT1 deficiency has been shown to protect against experimental autoimmune encephalomyelitis, nothing is known about the impact of MALT1 on virus infection in the central nervous system. Here, we studied infection with an attenuated rabies virus, Evelyn-Rotnycki-Abelseth (ERA) virus, and observed increased susceptibility with ERA virus in MALT1−/−mice. Indeed, after intranasal infection with ERA virus, wild-type mice developed mild transient clinical signs with recovery at 35 days postinoculation (dpi). Interestingly, MALT1−/−mice developed severe disease requiring euthanasia at around 17 dpi. A decreased induction of inflammatory gene expression and cell infiltration and activation was observed in MALT1−/−mice at 10 dpi compared to MALT1+/+infected mice. At 17 dpi, however, the level of inflammatory cell activation was comparable to that observed in MALT1+/+mice. Moreover, MALT1−/−mice failed to produce virus-neutralizing antibodies. Similar results were obtained with specific inactivation of MALT1 in T cells. Finally, treatment of wild-type mice with mepazine, a MALT1 protease inhibitor, also led to mortality upon ERA virus infection. These data emphasize the importance of early inflammation and activation of T cells through MALT1 for controlling the virulence of an attenuated rabies virus in the brain.IMPORTANCERabies virus is a neurotropic virus which can infect any mammal. Annually, 59,000 people die from rabies. Effective therapy is lacking and hampered by gaps in the understanding of virus pathogenicity. MALT1 is an intracellular protein involved in innate and adaptive immunity and is an interesting therapeutic target because MALT1-deregulated activity has been associated with autoimmunity and cancers. The role of MALT1 in viral infection is, however, largely unknown. Here, we study the impact of MALT1 on virus infection in the brain, using the attenuated ERA rabies virus in different models of MALT1-deficient mice. We reveal the importance of MALT1-mediated inflammation and T cell activation to control ERA virus, providing new insights in the biology of MALT1 and rabies virus infection.


2012 ◽  
Vol 189 (2) ◽  
pp. 968-979 ◽  
Author(s):  
Ana Villegas-Mendez ◽  
Rachel Greig ◽  
Tovah N. Shaw ◽  
J. Brian de Souza ◽  
Emily Gwyer Findlay ◽  
...  

2007 ◽  
Vol 81 (24) ◽  
pp. 13809-13815 ◽  
Author(s):  
Christof Geldmacher ◽  
Clive Gray ◽  
Martha Nason ◽  
Jeffrey R. Currier ◽  
Antelmo Haule ◽  
...  

ABSTRACT Human immunodeficiency virus (HIV)-specific CD8 T-cell responses targeting products encoded within the Gag open reading frame have frequently been associated with better viral control and disease outcome during the chronic phase of HIV infection. To further clarify this relationship, we have studied the dynamics of Gag-specific CD8 T-cell responses in relation to plasma viral load and time since infection in 33 chronically infected subjects over a 9-month period. High baseline viral loads were associated with a net loss of breadth (P < 0.001) and a decrease in the total magnitude of the Gag-specific T-cell response in general (P = 0.03). Most importantly, the baseline viral load predicted the subsequent change in the breadth of Gag recognition over time (P < 0.0001, r 2 = 0.41). Compared to maintained responses, lost responses were low in magnitude (P < 0.0001) and subdominant in the hierarchy of Gag-specific responses. The present study indicates that chronic exposure of the human immune system to high levels of HIV viremia is a determinant of virus-specific CD8 T-cell loss.


2007 ◽  
Vol 204 (9) ◽  
pp. 2023-2030 ◽  
Author(s):  
Ian Galea ◽  
Martine Bernardes-Silva ◽  
Penny A. Forse ◽  
Nico van Rooijen ◽  
Roland S. Liblau ◽  
...  

CD8 T cells are nature's foremost defense in encephalitis and brain tumors. Antigen-specific CD8 T cells need to enter the brain to exert their beneficial effects. On the other hand, traffic of CD8 T cells specific for neural antigen may trigger autoimmune diseases like multiple sclerosis. T cell traffic into the central nervous system is thought to occur when activated T cells cross the blood-brain barrier (BBB) regardless of their antigen specificity, but studies have focused on CD4 T cells. Here, we show that selective traffic of antigen-specific CD8 T cells into the brain occurs in vivo and is dependent on luminal expression of major histocompatibility complex (MHC) class I by cerebral endothelium. After intracerebral antigen injection, using a minimally invasive technique, transgenic CD8 T cells only infiltrated the brain when and where their cognate antigen was present. This was independent of antigen presentation by perivascular macrophages. Marked reduction of antigen-specific CD8 T cell infiltration was observed after intravenous injection of blocking anti–MHC class I antibody. These results expose a hitherto unappreciated route by which CD8 T cells home onto their cognate antigen behind the BBB: luminal MHC class I antigen presentation by cerebral endothelium to circulating CD8 T cells. This has implications for a variety of diseases in which antigen-specific CD8 T cell traffic into the brain is a beneficial or deleterious feature.


Author(s):  
Mariana V. Rosemblatt ◽  
Brian Parra-Tello ◽  
Pedro Briceño ◽  
Elizabeth Rivas-Yáñez ◽  
Suat Tucer ◽  
...  

Ecto-5′-nucleotidase (CD73) is an enzyme present on the surface of tumor cells whose primary described function is the production of extracellular adenosine. Due to the immunosuppressive properties of adenosine, CD73 is being investigated as a target for new antitumor therapies. We and others have described that CD73 is present at the surface of different CD8+ T cell subsets. Nonetheless, there is limited information as to whether CD73 affects CD8+ T cell proliferation and survival. In this study, we assessed the impact of CD73 deficiency on CD8+ T cells by analyzing their proliferation and survival in antigenic and homeostatic conditions. Results obtained from adoptive transfer experiments demonstrate a paradoxical role of CD73. On one side, it favors the expression of interleukin-7 receptor α chain on CD8+ T cells and their homeostatic survival; on the other side, it reduces the survival of activated CD8+ T cells under antigenic stimulation. Also, upon in vitro antigenic stimulation, CD73 decreases the expression of interleukin-2 receptor α chain and the anti-apoptotic molecule Bcl-2, findings that may explain the reduced CD8+ T cell survival observed in this condition. These results indicate that CD73 has a dual effect on CD8+ T cells depending on whether they are subject to an antigenic or homeostatic stimulus, and thus, special attention should be given to these aspects when considering CD73 blockade in the design of novel antitumor therapies.


Sign in / Sign up

Export Citation Format

Share Document