scholarly journals Some State Vaccination Laws Contribute To Greater Exemption Rates And Disease Outbreaks In The United States

2015 ◽  
Vol 34 (8) ◽  
pp. 1383-1390 ◽  
Author(s):  
W. David Bradford ◽  
Anne Mandich
1975 ◽  
Vol 132 (2) ◽  
pp. 224-228 ◽  
Author(s):  
J. M. Hughes ◽  
M. H. Merson ◽  
R. A. Pollard

PEDIATRICS ◽  
1973 ◽  
Vol 51 (2) ◽  
pp. 413-417
Author(s):  
Richard E. Dixon ◽  
Richard A. Kaslow ◽  
George F. Mallison ◽  
John V. Bennett

Following the Food and Drug Administration's release of recommendations on limiting the use of products containing hexachlorophene (HCP) for bathing newborn infants, 142 hospitals spontaneously reported outbreaks of neonatal staphybococcal disease. Epidemiologic investigations were carried out in 73 of these hospitals; 66 had confirmed outbreaks of neonatal staphylococcal disease. In 60 of the 66, discontinuation of HCP bathing of newborn infants preceded the epidemic. Alterations in handwashing policies did not appear implicated in any outbreak investigated. These findings suggested that discontinuation of HCP bathing of newborn infants was associated with increased incidence of neonatal staphylococcal disease.


2018 ◽  
Vol 69 (3) ◽  
pp. 428-437 ◽  
Author(s):  
Eelco Franz ◽  
Ovidiu Rotariu ◽  
Bruno S Lopes ◽  
Marion MacRae ◽  
James L Bono ◽  
...  

AbstractBackgroundShiga toxin–producing Escherchia coli (STEC) O157:H7 is a zoonotic pathogen that causes numerous food and waterborne disease outbreaks. It is globally distributed, but its origin and the temporal sequence of its geographical spread are unknown.MethodsWe analyzed whole-genome sequencing data of 757 isolates from 4 continents, and performed a pan-genome analysis to identify the core genome and, from this, extracted single-nucleotide polymorphisms. A timed phylogeographic analysis was performed on a subset of the isolates to investigate its worldwide spread.ResultsThe common ancestor of this set of isolates occurred around 1890 (1845–1925) and originated from the Netherlands. Phylogeographic analysis identified 34 major transmission events. The earliest were predominantly intercontinental, moving from Europe to Australia around 1937 (1909–1958), to the United States in 1941 (1921–1962), to Canada in 1960 (1943–1979), and from Australia to New Zealand in 1966 (1943–1982). This pre-dates the first reported human case of E. coli O157:H7, which was in 1975 from the United States.ConclusionsInter- and intra-continental transmission events have resulted in the current international distribution of E. coli O157:H7, and it is likely that these events were facilitated by animal movements (eg, Holstein Friesian cattle). These findings will inform policy on action that is crucial to reduce the further spread of E. coli O157:H7 and other (emerging) STEC strains globally.


2021 ◽  
Author(s):  
satya katragadda ◽  
ravi teja bhupatiraju ◽  
vijay raghavan ◽  
ziad ashkar ◽  
raju gottumukkala

Abstract Background: Travel patterns of humans play a major part in the spread of infectious diseases. This was evident in the geographical spread of COVID-19 in the United States. However, the impact of this mobility and the transmission of the virus due to local travel, compared to the population traveling across state boundaries, is unknown. This study evaluates the impact of local vs. visitor mobility in understanding the growth in the number of cases for infectious disease outbreaks. Methods: We use two different mobility metrics, namely the local risk and visitor risk extracted from trip data generated from anonymized mobile phone data across all 50 states in the United States. We analyzed the impact of just using local trips on infection spread and infection risk potential generated from visitors' trips from various other states. We used the Diebold-Mariano test to compare across three machine learning models. Finally, we compared the performance of models, including visitor mobility for all the three waves in the United States and across all 50 states. Results: We observe that visitor mobility impacts case growth and that including visitor mobility in forecasting the number of COVID-19 cases improves prediction accuracy by 34. We found the statistical significance with respect to the performance improvement resulting from including visitor mobility using the Diebold-Mariano test. We also observe that the significance was much higher during the first peak March to June 2020. Conclusion: With presence of cases everywhere (i.e. local and visitor), visitor mobility (even within the country) is shown to have significant impact on growth in number of cases. While it is not possible to account for other factors such as the impact of interventions, and differences in local mobility and visitor mobility, we find that these observations can be used to plan for both reopening and limiting visitors from regions where there are high number of cases.


2019 ◽  
Vol 14 (10) ◽  
pp. 491-496
Author(s):  
Tracy Perron ◽  
Heather Larovere ◽  
Victoria Guerra ◽  
Kathleen Kilfeather ◽  
Nicole Pare ◽  
...  

As measles cases continue to rise in the United States and elsewhere, public health officials, health care providers and elected officials alike are facing critical questions of how to protect the health of the public from current and future vaccine preventable disease outbreaks while still preserving the religious and personal autonomy of the populations they serve. As measles cases are being examined and carefully managed, public health officials are also tasked with revisiting vaccination policies and agendas to determine the best evidence-based interventions to control this epidemic. To determine the best course of action for the public's interest, research and current literature must be examined to protect and promote the health and wellbeing of those currently affected by the measles outbreak and those yet to be exposed.


2018 ◽  
Vol 6 (1) ◽  
Author(s):  
Anita Jaglarz ◽  
Artur Gurgul ◽  
William J. Leigh ◽  
Janina Z. Costa ◽  
Kim D. Thompson

ABSTRACT This paper describes the whole-genome sequences for three Streptococcus agalactiae serotype Ia isolates. The isolates were recovered from the brains of clinically sick tilapia, Oreochromis niloticus, that were suffering from streptococcosis. One isolate was from tilapia in the United States and the other two from fish in China.


2020 ◽  
Vol 21 (3) ◽  
pp. 214-216
Author(s):  
Margery Daughtrey ◽  
Janna Beckerman ◽  
William J. Davis ◽  
Karen Rane ◽  
Jo Anne Crouch

Two new series of Impatiens walleriana (impatiens) cultivars, Beacon and Imara XDR, were released to commercial growers in the United States in 2019 to 2020. Field trials show these new cultivar series are highly resistant to impatiens downy mildew (IDM). However, neither of these two impatiens series are completely immune to the disease, and preventive fungicide programs are still recommended for use throughout production to maintain plant health. Here we report two destructive outbreaks of IDM from Imara XDR in two commercial production facilities in California, one in 2019 and one in 2020. The disease outbreaks were caused by a known rDNA genotype of Plasmopara destructor (synonym = P. obducens). Modified Koch’s postulates showed that the pathogen could infect and cause disease in both Beacon and Imara XDR plants. Mefenoxam applied by both growers may have been ineffective due to resistance in P. destructor populations, which has been demonstrated on several previous occasions. Given these findings, fungicide programs intended to supplement genetic resistance should not be overly reliant upon application of mefenoxam and should utilize effective materials from different mode of action groups, in rotation. Fungicides to supplement genetic resistance are particularly appropriate in frost-free areas or in any circumstances that provide a potential inoculum source.


2001 ◽  
Vol 356 (1411) ◽  
pp. 1001-1012 ◽  
Author(s):  
A. Dobson ◽  
J. Foufopoulos

The first part of this paper surveys emerging pathogens of wildlife recorded on the ProMED Web site for a 2–year period between 1998 and 2000. The majority of pathogens recorded as causing disease outbreaks in wildlife were viral in origin. Anthropogenic activities caused the outbreaks in a significant majority of cases. The second part of the paper develops some matrix models for quantifying the basic reproductive number, R 0 , for a variety of potential types of emergent pathogen that cause outbreaks in wildlife. These analyses emphasize the sensitivity of R 0 to heterogeneities created by either the spatial structure of the host population, or the ability of the pathogens to utilize multiple host species. At each stage we illustrate how the approach provides insight into the initial dynamics of emergent pathogens such as canine parvovirus, Lyme disease, and West Nile virus in the United States.


2017 ◽  
Vol 15 (3) ◽  
pp. 438-450 ◽  
Author(s):  
J. W. Gargano ◽  
E. A. Adam ◽  
S. A. Collier ◽  
K. E. Fullerton ◽  
S. J. Feinman ◽  
...  

Diseases spread by water are caused by fecal–oral, contact, inhalation, or other routes, resulting in illnesses affecting multiple body systems. We selected 13 pathogens or syndromes implicated in waterborne disease outbreaks or other well-documented waterborne transmission (acute otitis externa, Campylobacter, Cryptosporidium, Escherichia coli (E. coli), free-living ameba, Giardia, Hepatitis A virus, Legionella (Legionnaires' disease), nontuberculous mycobacteria (NTM), Pseudomonas-related pneumonia or septicemia, Salmonella, Shigella, and Vibrio). We documented annual numbers of deaths in the United States associated with these infections using a combination of death certificate data, nationally representative hospital discharge data, and disease-specific surveillance systems (2003–2009). We documented 6,939 annual total deaths associated with the 13 infections; of these, 493 (7%) were caused by seven pathogens transmitted by the fecal–oral route. A total of 6,301 deaths (91%) were associated with infections from Pseudomonas, NTM, and Legionella, environmental pathogens that grow in water system biofilms. Biofilm-associated pathogens can cause illness following inhalation of aerosols or contact with contaminated water. These findings suggest that most mortality from these 13 selected infections in the United States does not result from classical fecal–oral transmission but rather from other transmission routes.


Sign in / Sign up

Export Citation Format

Share Document