In Vivo and In Vitro Antitumor Effect of Ascorbic Acid, Lysine, Proline, Arginine, and Green Tea Extract on Human Fibrosarcoma Cells HT-1080

2006 ◽  
Vol 23 (1) ◽  
pp. 105-112 ◽  
Author(s):  
M. Waheed Roomi ◽  
Vadim Ivanov ◽  
Tatiana Kalinovsky ◽  
Aleksandra Niedzwiecki ◽  
Matthias Rath
2013 ◽  
Vol 49 (2) ◽  
pp. 341-349 ◽  
Author(s):  
Tariq Mahmood ◽  
Naveed Akhtar ◽  
Barkat Ali Khan ◽  
Akhtar Rasul ◽  
Haji M. Shoaib Khan

Complex multiple emulsions have an excellent ability to fill large volumes of functional cosmetic agents. This study was aimed to encapsulate large volume of green tea in classical multiple emulsion and to compare its stability with a multiple emulsion without green tea extract. Multiple emulsions were developed using Cetyl dimethicone copolyol as lipophilic emulsifier and classic polysorbate-80 as hydrophilic emulsifier. Multiple emulsions were evaluated for various physicochemical aspects like conductivity, pH, microscopic analysis, rheology and these characteristics were followed for a period of 30 days in different storage conditions. In vitro and in vivo skin protection tests were also performed for both kinds of multiple emulsions i.e. with active (MeA) and without active (MeB). Both formulations showed comparable characteristics regarding various physicochemical characteristics in different storage conditions. Rheological analysis showed that formulations showed pseudo plastic behavior upon continuous shear stress. Results of in vitro and in vivo skin protection data have revealed that the active formulation has comparable skin protection effects to that of control formulation. It was presumed that stable multiple emulsions could be a promising choice for topical application of green tea but multiple emulsions presented in this study need improvement in the formula, concluded on the basis of pH, conductivity and apparent viscosity data.


2005 ◽  
Vol 22 (2) ◽  
pp. 129-138 ◽  
Author(s):  
M. Waheed Roomi ◽  
Vadim Ivanov ◽  
Tatiana Kalinovsky ◽  
Aleksandra Niedzwiecki ◽  
Matthias Rath

Food Research ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 468-473
Author(s):  
Melanie Cornelia ◽  
M. Anggraini

Okra (Abelmoschus esculentus L.) seeds and green tea (Camellia sinensis) have been known have many beneficial functions for human’s health, because of the high antioxidant contents and anti-cholesterol activities that can prevent cardiovascular disease. This research is aimed to make the formulation of healthy drink from okra seed juice with the addition of green tea extract. Green tea used was selected from green tea that has the best antioxidant activity from ten samples of green tea in the market. The best antioxidant activity data was found in Jawa tea extract with IC50 85.28±0.21 µg/mL which was formulated with the extract of okra seeds, made in the ratio of 1: 4. Selected healthy drinks were tested for physical characteristics, antioxidant activities, and sensory tests, and have antioxidant activity IC50 222.16±1.38 µg/mL. Further research was to analyze the potential of drinks in reducing cholesterol in vitro and in vivo ways. In vitro, 500 ppm drinks were able to inhibit cholesterol up to 47.55±0.76% and in vivo, there was a significant decrease in cholesterol levels after drink for 21 days with cholesterol reduction to 35.50±2.37%, triglycerides decrease 19.39±3.10%, LDL decrease 34.76±2.62%, and an increase of HDL to 94.74±16.53%.


Pathogens ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1573
Author(s):  
Jeong-Won Kim ◽  
Chang-Yeop Kim ◽  
Jin-Hwa Kim ◽  
Ji-Soo Jeong ◽  
Je-Oh Lim ◽  
...  

In this study, we explored the potential beneficial effects of green tea extract (GTE) in a pathogenic Escherichia coli (F18:LT:STa:Stx2e)-induced colitis model. The GTE was standardized with catechin and epigallocatechin-3-gallate content using chromatography analysis. Ten consecutive days of GTE (500 and 1000 mg/kg) oral administration was followed by 3 days of a pathogenic E. coli challenge (1 × 109 CFU/mL). In vitro antibacterial analysis showed that GTE successfully inhibited the growth of pathogenic E. coli, demonstrating over a 3-fold reduction under time- and concentration-dependent conditions. The in vivo antibacterial effect of GTE was confirmed, with an inhibition rate of approximately 90% when compared to that of the E. coli alone group. GTE treatment improved pathogenic E. coli-induced intestinal injury with well-preserved epithelial linings and villi. In addition, the increased expression of annexin A1 in GTE-treated jejunum tissue was detected, which was accompanied by suppressed inflammation-related signal expression, including TNFA, COX-2, and iNOS. Moreover, proliferation-related signals such as PCNA, CD44, and Ki-67 were enhanced in the GTE group compared to those in the E. coli alone group. Taken together, these results indicate that GTE has an antibacterial activity against pathogenic E. coli and ameliorates pathogenic E. coli-induced intestinal damage by modulating inflammation and epithelial cell proliferation.


2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Lisni Noraida Waruwu ◽  
Maria Bintang ◽  
Bambang Pontjo Priosoeryanto

Green tea (Camellia sinensis) is one of traditional plants that have the potential as an anticancer. The sample used in this research commercial green tea extract. The purpose of this study was to test the antiproliferation activity of green tea extract on breast cancer cell MCM-B2 in vitro. Green tea extract fractionated using three solvents, ie water, ethanol 70%, and n-hexane. Extract and fraction of green tea water have value Lethality Concentration 50 (LC50) more than 1000 ppm. The fraction of ethanol 70% and n-hexane had an LC50 value of 883.48 ppm and 600.56 ppm, respectively. The results of the phytochemical screening of green tea extract are flavonoids, tannins, and saponins, while the phytochemical screening results of n-hexane fraction are flavonoids and tannins. Antiproliferation activity was tested on breast cancer cells MCM-B2 and normal cells Vero by trypan blue staining method. The highest MCM-B2 cell inhibitory activity was achieved at a concentration of 13000 ppm green tea extract and 1000 ppm of n-hexane fraction, 59% and 59%, respectively. The extract and n-hexane fraction of green tea are not toxic to normal Vero cells characterized by not inhibiting normal cell proliferation. Keywords: antiproliferative, cancer cell MCM-B2, commercial green tea, cytotoxicity


2008 ◽  
Vol 78 (3) ◽  
pp. 242-249 ◽  
Author(s):  
Jun Xu ◽  
Jue Wang ◽  
Fei Deng ◽  
Zhihong Hu ◽  
Hualin Wang

2011 ◽  
Vol 62 (2) ◽  
pp. 139-146 ◽  
Author(s):  
Ksenija Durgo ◽  
Sandra Kostić ◽  
Katarina Gradiški ◽  
Draženka Komes ◽  
Maja Osmak ◽  
...  

Genotoxic Effects of Green Tea Extract on Human Laryngeal Carcinoma Cells In VitroGreen tea (Camellia sinensis) contains several bioactive compounds which protect the cell and prevent tumour development. Phytochemicals in green tea extract (mostly flavonoids) scavenge free radicals, but also induce pro-oxidative reactions in the cell. In this study, we evaluated the potential cytotoxic and prooxidative effects of green tea extract and its two main flavonoid constituents epigallocatechin gallate (EGCG) and epicatechin gallate (ECG) on human laryngeal carcinoma cell line (HEp2) and its cross-resistant cell line CK2. The aim was to see if the extract and its two flavonoids could increase the sensitivity of the cisplatin-resistant cell line CK2 in comparison to the parental cell line. The results show that EGCG and green tea extract increased the DNA damage in the CK2 cell line during short exposure. The cytotoxicity of EGCG and ECG increased with the time of incubation. Green tea extract induced lipid peroxidation in the CK2 cell line. The pro-oxidant effect of green tea was determined at concentrations higher than those found in traditionally prepared green tea infusions.


Sarcoma ◽  
2001 ◽  
Vol 5 (4) ◽  
pp. 197-202 ◽  
Author(s):  
Mitsunori Kaya ◽  
Takuro Wada ◽  
Satoshi Nagoya ◽  
Satoshi Kawaguchi ◽  
Toshihiko Yamashita ◽  
...  

Angiogenesis inhibitors are a novel class of promising therapeutic agents for treating cancer. TNP-470, a systemic analogue of fumagillin, is an angiogenesis inhibitor capable of suppressing the tumorigenicity in several animal models even though the mechanisms of action have not been completely clarified. In the current study, we investigated the effects of TNP-470 on human fibrosarcoma cellsin vivoandin vitro. The administration of TNP-470 could suppress the tumorigenicity of HT1080 fibrosarcoma tumor. The conditioned medium from HT1080 fibrosarcoma cells treated with TNP-470 inhibited the proliferation and migration of human endothelial cell line, HUVEC and ECV304. The concentration of VEGF in the conditioned medium from HT1080 cells treated with TNP-470 was lower than that of the cells without TNP-470 treatment, indicating that TNP-470 downregulates the secretion of VEGF from HT1080 cells. These findings strongly suggest that the direct action of TNP-470 on sarcoma cells inhibits angiogenesis through the downregulation of VEGF secretion and this angiogenesis suppression resulted in the inhibition of tumorigenicity of HT1080 fibrosarcoma tumo.


Author(s):  
Indra Syahputra Roes Lie ◽  
Joshita Djajadisastra ◽  
Fadlina Chany Saputri

Objective: To formulate a green tea extract (GTE), which is often used as a hair growth product, to produce an eyelash gel with good stability, effectiveness, and safety for growing eyelashes.Methods: GTE was formulated into a gel. A stability test was performed at a high temperature (40±2°C), room temperature (25±2°C), low temperature (4±2°C), and a cycling temperature. An in vitro hen’s egg test-chorioallantoic membrane assay was performed to evaluate potential eye irritation. An eyelash growth test was conducted by length measurement using an eyelash ruler before and after 2 mo of application in human volunteers. Results: The GTE gel was stable in storage at high, room, and low temperatures and at cycling temperatures and did not cause eye irritation. Eyelashes grew significantly more in the test group than in the placebo group after 2 mo of application (p<0.05). Conclusion: GTE gel provides a new, safe, and effective option for growing natural eyelashes.


Sign in / Sign up

Export Citation Format

Share Document