scholarly journals Mapping of forest habitats vulnerable to fires using Corine Land Cover database and digital terrain model

2014 ◽  
pp. 871-881
Author(s):  
Edyta Woźniak ◽  
Mirosław Kwiatkowski ◽  
Bartłomiej Kołakowski
2012 ◽  
Vol 1 (1) ◽  
pp. 81-85 ◽  
Author(s):  
Michał Sobala ◽  
Barbara Czajka

Abstract Digital Terrain Model (DTM) and maps based on it, are very valuable tool in investigations of distribution of cultural landscape elements. Connection DTM with a digital land cover maps, clearly illustrate factors determinate location of various landscape elements. The paper presents the applicability of Digital Terrain Model to detect the influence of topographic attributes on landscape elements distribution and to determinate the landscape’s structure in the different altitudinal zones. Presented results, are the effect of the first phase of cultural landscape elements distribution research and they are starting point to look for other factors which could effect on structure of the landscape.


Author(s):  
Chiman Kwan ◽  
David Gribben ◽  
Bulent Ayhan ◽  
Jude Larkin

In some applications such as construction planning and land surveying, an accurate digital terrain model (DTM) is essential. However, in urban and sub-urban areas, the terrain may be covered by trees and man-made structures. Although digital surface model (DSM) obtained by radar or LiDAR can provide a general idea of the terrain, the presence of trees, buildings, etc. conceals the actual terrain elevation. Normally, the process of extracting DTM involves a land cover classification followed by a trimming step that removes the elevation due to trees and buildings. In this chapter, we assume the land cover types have been classified and we focus on the use of image inpainting algorithms for DTM generation. That is, for buildings and trees, we remove those pixels from the DSM and then apply inpainting techniques to reconstruct the terrain pixels in those areas. A dataset with DSM and hyperspectral data near the U. Houston area was used in our study. The DTM from United States Geological Survey (USGS) was used as the ground truth. Objective evaluation results indicate that some inpainting methods perform better than others.


2006 ◽  
Vol 12 (1) ◽  
pp. 305-313
Author(s):  
Karol Kącki

Abstract The relationships between individual components of the natural environment have long been an object of research (Kostrowicki, Wójcik, 1972; Rączkowska, Kozłowska, 1994; Kozłowska, Rączkowska, 1996). This paper is an attempt to analyse the relationships between two geocomponents of the natural environment: relief and vegetation, from a perspective contrary to the one currently prevailing in the literature of the subject. This approach assumes that relief, with its dominant role as a component strongly affecting the formation of the remaining factors, can be indicative in character and as such can represent basic factors that help determine and anticipate the occurrences of certain plant communities as well as locations with no vegetation. Using geoinformation data along with the tools to process them, an attempt was made to assess the usefulness of the DTM (Digital Terrain Model) to identify selected plant communities, rock and water. The development of a model of the relationships between the relief and the vegetation is an attempt to capture the correspondence between the parameters characterising the relief, calculated using the DTM model and classes of objects, with the use of information obtained from an Ikonos XS image. This model was subsequently used to draw a map of the land cover for a part of the Gąsienicowa Valley in the High Tatra (Dolina Gąsienicowa). For the purpose of this exercise, a technique of data classification called DBT (Decision Binary Trees) was used.


Author(s):  
S. Gobbi ◽  
G. Maimeri ◽  
C. Tattoni ◽  
M. G. Cantiani ◽  
D. Rocchini ◽  
...  

<p><strong>Abstract.</strong> The availability of data time series spanning a long period is crucial for landscape change analysis. A suitable dataset, both in terms of time span and information content, must be available for the use with a GIS.</p><p>In Italy, one of the most important historical source of land cover analysis is the GAI (Gruppo Aereo Italiano) photogrammetric survey (“Volo GAI”) commissioned in 1954 by the Italian national mapping agency, Istituto Geografico Militare Italiano (IGMI).</p><p>The survey covers the whole Italy, but so far only some Regions, namely Lombardia and Veneto, have carried out the image rectification and the successive analyses to map land cover and use.</p><p>This work describes the process of image orthorectification of the Volo GAI images for the Province of Trento (Provincia Autonoma di Trento).</p><p>Image orthorectification must be performed to transform the images in maps available for analysis. This procedure corrects the geometry according to the terrain surface described by a Digital Terrain Model (DTM) to create an image compatible with the cartographic projection in use.</p><p>To this end, the orthorectification modules available in GRASS GIS have been used, with the advantage of using the same GIS environment which will be used for the landscape analysis.</p><p> The dataset covering the whole Province contains almost 100 images, this paper presents the preliminary results of the orthorectification of a quarter of the images. A reduced dataset has been used to test the results obtained using different settings with respect to: digital image resolution, DTM resolution and number of Ground Control Points (GCPs) used for the external orientation.</p><p>These preliminary tests show that for the average quality of the Volo GAI images scan resolution beyond 600<span class="thinspace"></span>DPI and DTM resolution above 10<span class="thinspace"></span>m do not provide significant improvements for orthorectification images. The minimum number of GCPs to guarantee the requested accuracy can vary from image to image, depending on the image quality and recognizable features position, but it is usually in the 15&amp;ndash;20 points range.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 265
Author(s):  
Mihnea Cățeanu ◽  
Arcadie Ciubotaru

Laser scanning via LiDAR is a powerful technique for collecting data necessary for Digital Terrain Model (DTM) generation, even in densely forested areas. LiDAR observations located at the ground level can be separated from the initial point cloud and used as input for the generation of a Digital Terrain Model (DTM) via interpolation. This paper proposes a quantitative analysis of the accuracy of DTMs (and derived slope maps) obtained from LiDAR data and is focused on conditions common to most forestry activities (rough, steep terrain with forest cover). Three interpolation algorithms were tested: Inverse Distance Weighted (IDW), Natural Neighbour (NN) and Thin-Plate Spline (TPS). Research was mainly focused on the issue of point data density. To analyze its impact on the quality of ground surface modelling, the density of the filtered data set was artificially lowered (from 0.89 to 0.09 points/m2) by randomly removing point observations in 10% increments. This provides a comprehensive method of evaluating the impact of LiDAR ground point density on DTM accuracy. While the reduction of point density leads to a less accurate DTM in all cases (as expected), the exact pattern varies by algorithm. The accuracy of the LiDAR-derived DTMs is relatively good even when LiDAR sampling density is reduced to 0.40–0.50 points/m2 (50–60 % of the initial point density), as long as a suitable interpolation algorithm is used (as IDW proved to be less resilient to density reductions below approximately 0.60 points/m2). In the case of slope estimation, the pattern is relatively similar, except the difference in accuracy between IDW and the other two algorithms is even more pronounced than in the case of DTM accuracy. Based on this research, we conclude that LiDAR is an adequate method for collecting morphological data necessary for modelling the ground surface, even when the sampling density is significantly reduced.


2020 ◽  
Vol 12 (1) ◽  
pp. 1185-1199
Author(s):  
Mirosław Kamiński

AbstractThe research area is located on the boundary between two Paleozoic structural units: the Radom–Kraśnik Block and the Mazovian–Lublin Basin in the southeastern Poland. The tectonic structures are separated by the Ursynów–Kazimierz Dolny fault zone. The digital terrain model obtained by the ALS (Airborne Laser Scanning) method was used. Classification and filtration of an elevation point cloud were performed. Then, from the elevation points representing only surfaces, a digital terrain model was generated. The model was used to visually interpret the course of topolineaments and their automatic extraction from DTM. Two topolineament systems, trending NE–SW and NW–SE, were interpreted. Using the kernel density algorithm, topolineament density models were generated. Using the Empirical Bayesian Kriging, a thickness model of quaternary deposits was generated. A relationship was observed between the course of topolineaments and the distribution and thickness of Quaternary formations. The topolineaments were compared with fault directions marked on tectonic maps of the Paleozoic and Mesozoic. Data validation showed consistency between topolineaments and tectonic faults. The obtained results are encouraging for further research.


2021 ◽  
Vol 10 (2) ◽  
pp. 91
Author(s):  
Triantafyllia-Maria Perivolioti ◽  
Antonios Mouratidis ◽  
Dimitrios Terzopoulos ◽  
Panagiotis Kalaitzis ◽  
Dimitrios Ampatzidis ◽  
...  

Covering an area of approximately 97 km2 and with a maximum depth of 58 m, Lake Trichonis is the largest and one of the deepest natural lakes in Greece. As such, it constitutes an important ecosystem and freshwater reserve at the regional scale, whose qualitative and quantitative properties ought to be monitored. Depth is a crucial parameter, as it is involved in both qualitative and quantitative monitoring aspects. Thus, the availability of a bathymetric model and a reliable DTM (Digital Terrain Model) of such an inland water body is imperative for almost any systematic observation scenario or ad hoc measurement endeavor. In this context, the purpose of this study is to produce a DTM from the only official cartographic source of relevant information available (dating back approximately 70 years) and evaluate its performance against new, independent, high-accuracy hydroacoustic recordings. The validation procedure involves the use of echosoundings coupled with GPS, and is followed by the production of a bathymetric model for the assessment of the discrepancies between the DTM and the measurements, along with the relevant morphometric analysis. Both the production and validation of the DTM are conducted in a GIS environment. The results indicate substantial discrepancies between the old DTM and contemporary acoustic data. A significant overall deviation of 3.39 ± 5.26 m in absolute bottom elevation differences and 0.00 ± 7.26 m in relative difference residuals (0.00 ± 2.11 m after 2nd polynomial model corrector surface fit) of the 2019 bathymetric dataset with respect to the ~1950 lake DTM and overall morphometry appear to be associated with a combination of tectonics, subsidence and karstic phenomena in the area. These observations could prove useful for the tectonics, geodynamics and seismicity with respect to the broader Corinth Rift region, as well as for environmental management and technical interventions in and around the lake. This dictates the necessity for new, extensive bathymetric measurements in order to produce an updated DTM of Lake Trichonis, reflecting current conditions and tailored to contemporary accuracy standards and state-of-the-art research in various disciplines in and around the lake.


Drones ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 20
Author(s):  
Joseph P. Hupy ◽  
Cyril O. Wilson

Soil erosion monitoring is a pivotal exercise at macro through micro landscape levels, which directly informs environmental management at diverse spatial and temporal scales. The monitoring of soil erosion can be an arduous task when completed through ground-based surveys and there are uncertainties associated with the use of large-scale medium resolution image-based digital elevation models for estimating erosion rates. LiDAR derived elevation models have proven effective in modeling erosion, but such data proves costly to obtain, process, and analyze. The proliferation of images and other geospatial datasets generated by unmanned aerial systems (UAS) is increasingly able to reveal additional nuances that traditional geospatial datasets were not able to obtain due to the former’s higher spatial resolution. This study evaluated the efficacy of a UAS derived digital terrain model (DTM) to estimate surface flow and sediment loading in a fluvial aggregate excavation operation in Waukesha County, Wisconsin. A nested scale distributed hydrologic flow and sediment loading model was constructed for the UAS point cloud derived DTM. To evaluate the effectiveness of flow and sediment loading generated by the UAS point cloud derived DTM, a LiDAR derived DTM was used for comparison in consonance with several statistical measures of model efficiency. Results demonstrate that the UAS derived DTM can be used in modeling flow and sediment erosion estimation across space in the absence of a LiDAR-based derived DTM.


Sign in / Sign up

Export Citation Format

Share Document