scholarly journals Weissella, a novel lactic acid bacteria isolated from wild Sumatran orangutans (Pongo abelii)

2019 ◽  
Vol 12 (7) ◽  
pp. 1060-1065
Author(s):  
Safika Safika ◽  
Wardinal Wardinal ◽  
Yulia Sari Ismail ◽  
Khairun Nisa ◽  
Wenny Novita Sari

Aim: This study aimed to isolate and identify lactic acid bacteria (LAB) in wild Sumatran orangutans to provide more information about LAB diversity derived from Sumatran orangutan feces. Materials and Methods: Fecal sampling from three female orangutans, around 35 years old, was carried out in the wild forest areas at the research station of Suaq Belimbing Gunung Leuser National Park located in the South Aceh district. Orangutan fecal samples were taken in the morning when the orangutans first defecated. The orangutans were above the tree, which is approximately 12-15 m from the ground where feces were found. Results: Fermentation testing using the API 50 CHL Kit showed that OUL4 isolates were identified as Lactococcus lactis ssp. lactis with an identity value of 73.5%. Homology analysis demonstrated that the OUL4 isolates have 93% similarity to Weissella cibaria, and phylogenetic trees constructed using Mega 7.0 also showed that OUL4 isolates are related to W. cibaria. Conclusion: These results show that there is a difference in identification between biochemical testing with API kits and molecular analyses on LAB isolates from wild Sumatran orangutans. Based on 16S rRNA gene homology, the OUL4 LAB isolates from wild Sumatran orangutans have 93% homology to W. cibaria.

Author(s):  
Wardinal Wardinal ◽  
Safika Safika ◽  
Yulia Sari Ismail

Lactic Acid Bacteria (LAB) has many benefits for human and animal health and has been widely used as a probiotic. One of the LAB is the genus Lactobacillus which consists of many species used for fermentation and food preservation. This study was conducted to isolate and identify the LAB of the genus Lactobacillus from the faeces of wild Sumatran Orangutan (Pongo abelii) at the Suaq Belimbing Research Station in South Aceh. Bacterial isolation was carried out using Man Rogosa Sharpe Agar (MRSA). Colonies that grew on MRSA media were observed for morphology and were Gram stained. Biochemical tests were conducted using KIT API 50 CHL. Data analysis used the Apiweb computer program Version V-5.2. The results showed that the OUL isolate was a species of Lactobacillus delbrueckii ssp delbrueckii, with an identity of 93.8%. Based on this, it can be concluded that there is a Lactic Acid Bacteria of the Lactobacillus in the faeces of wild Sumatran Orangutan (Pongo abelii) at the Suaq Belimbing Research Station in South Aceh.


Author(s):  
Siti Hajar ◽  
Safika Safika ◽  
Darmawi Darmawi ◽  
Wenny Novita Sari ◽  
Erdiansyah Rahmi ◽  
...  

The purpose of this study was to characterize the bacterial 16S rRNA gene of Sumatran orangutan (Pongo abelii) Bukittinggi West Sumatera zoo. The sample used in this study are lactic acid bacteria of the Sumatran orangutan (Pongo abelii) derived from zoo Bukittinggi West Sumatra Indonesia. This study was an exploratory study that conducted at the Laboratory through several stages. The first stage was the isolation of LAB from faeces of Sumatran orangutans using MRS agar medium and then cultured in a liquid medium NB. The next stage was the isolation of total DNA, and then, the third stage was the amplification of the 16S rRNA gene and agarose gel electrophoresis. Then,in the fourth stage of determining the DNA sequence and analysis of DNA sequence homology. The final stage was the computational analysis of 16S rRNA gene Sumatran orangutan (Pongo abelii). The results showed that lactic acid bacteria (LAB) from the Sumatran orangutan (Pongo abelii) is close to lactic acid bacteria Lactobacillus helveticus strain IMAU50151 with the levelof similarity of 89%. It is possible that these bacteria is a new species or the species that LAB has not been reported in Genbank.


2021 ◽  
Vol 9 (7) ◽  
pp. 1346
Author(s):  
Mariana Petkova ◽  
Petya Stefanova ◽  
Velitchka Gotcheva ◽  
Angel Angelov

Traditional sourdoughs in Bulgaria were almost extinct during the centralized food production system. However, a rapidly developing trend of sourdough revival in the country is setting the demand for increased production and use of commercial starter cultures. The selection of strains for such cultures is based on geographical specificity and beneficial technological properties. In this connection, the aim of this study was to isolate, identify and characterize lactic acid bacteria (LAB) and yeasts from typical Bulgarian sourdoughs for the selection of strains for commercial sourdough starter cultures. Twelve samples of typical Bulgarian sourdoughs were collected from different geographical locations. All samples were analyzed for pH, total titratable acidity and dry matter content. Enumeration of LAB and yeast was also carried out. Molecular identification by 16S rDNA sequence analysis was performed for 167 LAB isolates, and 106 yeast strains were identified by ITS1-5.8S-ITS2 rRNA gene partial sequence analysis. The LAB strains were characterized according to their amylolytic and proteolytic activity and acidification capacity, and 11 strains were selected for further testing of their antimicrobial properties. The strains with the most pronounced antibacterial and antifungal activity are listed as recommended candidates for the development of starter cultures for sourdoughs or other food products.


2021 ◽  
Vol 6 (1) ◽  
pp. 58612
Author(s):  
Silvi Dwi Anasari ◽  
Wulan Pusparini ◽  
Noviar Andayani

The distribution of a species can help guide the protection activities in their natural habitat. Conversely, the lack of information on this distribution makes the protection strategy of this species difficult. The research was conducted in Way Canguk Research Station, Bukit Barisan Selatan National Park from January until March 2018. The purposes of this research were to create a distribution prediction map of Sunda pangolin (Manis javanica) and estimating the environment variables that most influenced the probability of the distribution. Fourteen points of camera trap coordinates were used for presence data with nine types of environment variables such as elevation, slope, understorey, canopy cover, distance from roads, distance from rivers, distance from villages, food source, and distance from the threat. The result of maxent showed an Area Under the Curve (AUC) value of 0.909 categorized as very good. The highest probability of Sunda pangolin distributions was in the Pemerihan Resort and Way Haru Resort area, while the dominant environmental variables included the distance from the village, the canopy cover, and the distance from threat with the value 47.7; 25.85; and 15.8%, respectively. Prediction maps and environment variables can help to identify the population of Sunda pangolin in the wild and can provide input for the national parks to prioritize protection areas for Sunda pangolin from the increased poaching.


Author(s):  
Jinghui Yao ◽  
Jing Gao ◽  
Jianming Guo ◽  
Hengan Wang ◽  
En Zhang ◽  
...  

The consumption of cheese in China is increasing rapidly. Little is known about the microbiota, the presence of antibiotic-resistant bacteria, or the distribution of antibiotic resistance genes (ARGs) in commercially-produced cheeses sold in China. These are important criteria for evaluating quality and safety. Thus, this study assessed the metagenomics of fifteen types of cheese using 16S rRNA gene sequencing. Fourteen bacterial genera were detected. Lactococcus , Lactobacillus , and Streptococcus were dominant based on numbers of sequence reads. Multidrug-resistant lactic acid bacteria were isolated from most of the types of cheese. The isolates showed 100% and 91.7% resistance to streptomycin and sulfamethoxazole, respectively, and genes involved in acquired resistance to streptomycin ( strB) and sulfonamides ( sul2) were detected with high frequency. To analyze the distribution of ARGs in the cheeses in overall, 309 ARGs from eight categories of ARG and nine transposase genes were profiled. A total of 169 ARGs were detected in the 15 cheeses; their occurrence and abundance varied significantly between cheeses. Our study demonstrates that there is various diversity of the bacteria and ARGs in cheeses sold in China. The risks associated with multidrug resistance of dominant lactic acid bacteria are of great concern.


2020 ◽  
Vol 8 (10) ◽  
pp. 1578 ◽  
Author(s):  
Massimo Iorizzo ◽  
Gianfranco Pannella ◽  
Silvia Jane Lombardi ◽  
Sonia Ganassi ◽  
Bruno Testa ◽  
...  

Lactic acid bacteria could positively affect the health of honey bees, including nutritional supplementation, immune system development and pathogen colonization resistance. Based on these considerations the present study evaluated predominant Lactic Acid Bacteria (LAB) species from beebread as well as from the social stomach and midgut of Apis mellifera ligustica honey bee foragers. In detail, for each compartment, the diversity in species and biotypes was ascertained through multiple culture-dependent approaches, consisting of Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE), 16S rRNA gene sequencing and Randomly Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR). The study of a lactic acid bacteria community, performed with PCR-DGGE and sequence analysis targeting the V1–V3 region of the 16S rRNA gene (rDNA), highlighted the presence of a few species, including Apilactobacillus kunkeei, Lactiplantibacillus plantarum, Fructobacillus fructosus, Levilactobacillus brevis and Lactobacillus delbrueckii subsp. lactis. Depending on the different compartments, diverse levels of biodiversity in species were found. Particularly, a very low inter-species biodiversity was detected in the midgut that was prevalently dominated by the presence of Apilactobacillus kunkeei. On the other hand, the beebread was characterized by a reasonable biodiversity showing the presence of five species and the predominance of Apilactobacillus kunkeei, Lactiplantibacillus plantarum and Fructobacillus fructosus. The RAPD-PCR analysis performed on the three predominant species allowed the differentiation into several biotypes for each species. Moreover, a relationship between biotypes and compartments has been detected and each biotype was able to express a specific biochemical profile. The biotypes that populated the social stomach and midgut were able to metabolize sugars considered toxic for bees while those isolated from beebread could contribute to release useful compounds with functional properties. Based on this knowledge, new biotechnological approaches could be developed to improve the health of honey bees and the quality of bee products.


2013 ◽  
Vol 79 (24) ◽  
pp. 7827-7836 ◽  
Author(s):  
Danilo Ercolini ◽  
Erica Pontonio ◽  
Francesca De Filippis ◽  
Fabio Minervini ◽  
Antonietta La Storia ◽  
...  

ABSTRACTThe bacterial ecology during rye and wheat sourdough preparation was described by 16S rRNA gene pyrosequencing. Viable plate counts of presumptive lactic acid bacteria, the ratio between lactic acid bacteria and yeasts, the rate of acidification, a permutation analysis based on biochemical and microbial features, the number of operational taxonomic units (OTUs), and diversity indices all together demonstrated the maturity of the sourdoughs during 5 to 7 days of propagation. Flours were mainly contaminated by metabolically active genera (Acinetobacter,Pantoea,Pseudomonas,Comamonas,Enterobacter,Erwinia, andSphingomonas) belonging to the phylumProteobacteriaorBacteroidetes(genusChryseobacterium). Their relative abundances varied with the flour. Soon after 1 day of propagation, this population was almost completely inhibited except for theEnterobacteriaceae. Although members of the phylumFirmicuteswere present at very low or intermediate relative abundances in the flours, they became dominant soon after 1 day of propagation. Lactic acid bacteria were almost exclusively representative of theFirmicutesby this time.Weissellaspp. were already dominant in rye flour and stably persisted, though they were later flanked by theLactobacillus sakeigroup. There was a succession of species during 10 days of propagation of wheat sourdoughs. The fluctuation between dominating and subdominating populations ofL. sakeigroup,Leuconostocspp.,Weissellaspp., andLactococcus lactiswas demonstrated. Other subdominant species such asLactobacillus plantarumwere detectable throughout propagation. As shown by PCR-denaturing gradient gel electrophoresis (PCR-DGGE) analysis,Saccharomyces cerevisiaedominated throughout the sourdough propagation. Notwithstanding variations due to environmental and technology determinants, the results of this study represent a clear example of how the microbial ecology evolves during sourdough preparation.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Elena Franciosi ◽  
Ilaria Carafa ◽  
Tiziana Nardin ◽  
Silvia Schiavon ◽  
Elisa Poznanski ◽  
...  

“Nostrano-cheeses” are traditional alpine cheeses made from raw cow’s milk in Trentino-Alto Adige, Italy. This study identified lactic acid bacteria (LAB) developing during maturation of “Nostrano-cheeses” and evaluated their potential to produceγ-aminobutyric acid (GABA), an immunologically active compound and neurotransmitter. Cheese samples were collected on six cheese-making days, in three dairy factories located in different areas of Trentino and at different stages of cheese ripening (24 h, 15 days, and 1, 2, 3, 6, and 8 months). A total of 1,059 LAB isolates were screened using Random Amplified Polymorphic DNA-PCR (RAPD-PCR) and differentiated into 583 clusters. LAB strains from dominant clusters (n=97) were genetically identified to species level by partial 16S rRNA gene sequencing. LAB species most frequently isolated wereLactobacillus paracasei,Streptococcus thermophilus, andLeuconostoc mesenteroides. The 97 dominant clusters were also characterized for their ability in producing GABA by high-performance liquid chromatography (HPLC). About 71% of the dominant bacteria clusters evolving during cheeses ripening were able to produce GABA. Most GABA producers wereLactobacillus paracaseibut other GABA producing species includedLactococcus lactis,Lactobacillus plantarum,Lactobacillus rhamnosus,Pediococcus pentosaceus, andStreptococcus thermophilus. NoEnterococcus faecalisorSc. macedonicusisolates produced GABA. The isolate producing the highest amount of GABA (80.0±2.7 mg/kg) was aSc. thermophilus.


Sign in / Sign up

Export Citation Format

Share Document