scholarly journals Antibacterial activity of grapefruit peel extracts and green-synthesized silver nanoparticles

2021 ◽  
pp. 1330-1341
Author(s):  
Mbarga M. J. Arsène ◽  
I. V. Podoprigora ◽  
Anyutoulou K. L. Davares ◽  
Marouf Razan ◽  
M. S. Das ◽  
...  

Background and Aim: The gradual loss of efficacy of conventional antibiotics is a global issue. Plant material extracts and green-synthesized nanoparticles are among the most promising options to address this problem. Therefore, the aim of this study was to assess the antibacterial properties of aqueous and hydroalcoholic extracts of grapefruit peels as well as their inclusion in green-synthesized silver nanoparticles (AgNPs). Materials and Methods: Aqueous and hydroalcoholic extracts (80% v/v) were prepared, and the volume and mass yields were determined. The synthesis of AgNPs was done in an eco-friendly manner using AgNO3 as a precursor. The nanoparticles were characterized by ultraviolet–vis spectrometry and photon cross-correlation spectroscopy. The antibacterial activity of the extracts was tested on three Gram-positive bacteria (Staphylococcus aureus ATCC 6538, clinical Enterococcus faecalis, and S. aureus) and two Gram-negative bacteria (two clinical Escherichia coli) using various concentrations of extracts (100, 50, 25, 12, and 5 mg/mL and 5% dimethyl sulfoxide as negative control). Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined using the microdilution method. Modulation of cefazoline and ampicillin on resistant E. coli and S. aureus strains was added to the mixture design response surface methodology with extreme vertices design, with the diameters of inhibition and the fractional inhibitory concentration index as responses and factors, respectively. The antibiotic, the ethanolic extract, and water varied from 0.1 MIC to 0.9 MIC for the first two and from 0 to 0.8 in proportion for the third. Validating the models was done by calculating the absolute average deviation, bias factor, and accuracy factor. Results: The volume yield of the EE and aqueous extract (AE) was 96.2% and 93.8% (v/v), respectively, whereas their mass yields were 7.84% and 9.41% (m/m), respectively. The synthesized AgNPs were very uniform and homogeneous, and their size was dependent on the concentration of AgNO3. The antibacterial activity of the two extracts was dose-dependent, and the largest inhibition diameter was observed for the Gram-positive bacteria (S. aureus ATCC 6538; AE, 12; EE, 16), whereas AgNPs had a greater effect on Gram-negative bacteria. The MICs (mg/mL) of the AEs varied from 3.125 (S. aureus ATCC 6538) to 12.5 (E. coli 1 and E. coli 2), whereas the MICs of the EEs varied from 1.5625 (S. aureus 1, S. aureus ATCC 6538, and E. faecalis) to 6.25 (E. coli 1). There was a significant difference between the MICs of AEs and EEs (p=0.014). The MBCs (mg/mL) of the AEs varied from 12.5 (S. aureus ATCC 6538) to 50 (S. aureus 1), whereas those of the EEs varied from 6.25 (S. aureus 1) to 25 (E. coli 1 and E. faecalis). Ethanolic grapefruit extracts demonstrated an ability to modulate cefazolin on E. coli and S. aureus but were completely indifferent to ampicillin on E. coli. Conclusion: Grapefruit peel extracts and their AgNPs exhibit antibacterial properties that can be exploited for the synthesis of new antimicrobials and their EEs may be efficiently used synergistically with other antibiotics against bacteria with intermediate susceptibility.

2019 ◽  
Vol 18 (5) ◽  
pp. 1147-1155 ◽  
Author(s):  
Rehan Khan ◽  
Melis Özkan ◽  
Aisan Khaligh ◽  
Dönüs Tuncel

Water-dispersible glycosylated poly(2,5′-thienylene)porphyrin-based nanoparticles have the ability to generate singlet oxygen in high yields and exhibit light-triggered antibacterial activity against Gram negative bacteria, E. coli as well as Gram positive bacteria, B. subtilis.


2020 ◽  
Vol 840 ◽  
pp. 265-269
Author(s):  
Nurjanah Nurjanah ◽  
Endang Saepudin

Curcumin, a diarylheptanoids compound which isolated primary from Curcuma longa, exhibits a variety of exciting biological activities, including as an antibacterial agent. In the present study, a sulfanilamide-contained curcumin compound was synthesized and characterized to investigate the antibacterial activity against gram-positive bacteria S. aureus, B. subtilis and gram-negative bacteria E. coli. The characterization of the synthesized compound was determined by analysing peak absorbance, functional group, and molecular weight using mass spectroscopy, UV/Vis and FTIR spectrophotometry. Curcumin-sulfanilamide compound exhibited the best antibacterial activity against gram-negative bacteria compared to curcumin and the curcumin-derived compound containing isoxazole with inhibitory zone of 11 mm.


2005 ◽  
Vol 2 (2) ◽  
pp. 109-112
Author(s):  
A. K. Parekh ◽  
K. K. Desai

Some new chalcones have been prepared by Claisen-schmidt condensation of ketone and different aromatic aldehydes. These chalcones on condensation with urea in presence of acid gave Pyrimidine-2-ones. The synthesized compounds have been characterized by elemental analysis, IR and1H NMR spectral data. They have been screened for their antibacterial activity against Gram positive bacteria B. subtillis & S. aureus and Gram negative bacteria E. coli & S. typhi.


Author(s):  
Chinyere Benardette Chinaka Ikpa ◽  
Uchechukwu C. Okoro ◽  
Collins I. Ubochi ◽  
Kieran O. Nwanorh

The 2-phenylsulphonamide derivatives of amino acids were synthesis by simple substitution of benzenesulphonylchloride (6) with amino acids (1-5) containing pharmacological active functionalities. Structures of the synthesised compounds (7a-7e) were characterised using FT-IR, NMR(1H,13C) and elemental analysis. The anti bacterial activities of the synthesised compounds were evaluated against gram positive bacteria: Staph and Streptococcus, gram negative bacteria: E-coli, Klebsiella, Proteus, and pseudomonas using 200 µl of 10 mg/ml and minimum inhibitory concentration (MIC) were also determined. The compounds exhibited effective anti bacterial properties though some are not more active than the standard drug ciprofloxacin.


2018 ◽  
Vol 24 (6) ◽  
pp. 327-332 ◽  
Author(s):  
Yogesh D. Mane ◽  
Smita S. Patil ◽  
Dhanraj O. Biradar ◽  
Bhimrao C. Khade

Abstract Ten 5-bromoindole-2-carboxamides were synthesized, characterized and evaluated for antibacterial activity against pathogenic Gram-negative bacteria Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa and Salmonella Typhi using gentamicin and ciprofloxacin as internal standards. Compounds 7a–c, 7g and 7h exhibit high antibacterial activity with a minimum inhibitory concentration (MIC) of 0.35–1.25 μg/mL. Compounds 7a–c exhibit antibacterial activities that are higher than those of the standards against E. coli and P. aeruginosa.


2018 ◽  
Vol 86 (4) ◽  
pp. 48 ◽  
Author(s):  
Rubén Vilcacundo ◽  
Pilar Méndez ◽  
Walter Reyes ◽  
Herman Romero ◽  
Adelita Pinto ◽  
...  

The aim of this study was to increase the antibacterial spectrum of modified hen egg white lysozyme (HEWL) with thermal and chemical treatments against Gram-negative bacteria. The antibacterial activity of heat-denatured HEWL and chemical denatured HEWL against Gram-negative and Gram-positive bacteria was evaluated in 15 h of incubation tests. HEWL was denatured by heating at pH 6.0 and pH 7.0 and chemical denaturing was carried out for 1.0, 1.5, 2.0, and 4.0 h with DL-Dithiothreitol (DTT). HEWL modified by thermal and chemical treatments was characterized using the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) electrophoresis method. Heat-denatured HEWL lytic activity against Micrococcus lysodeikticus lessened with increasing temperature and time of incubation with the chemical agent (DTT). The loss of lytic activity in modified HEWL suggests that the mechanism of action of the antibacterial activity is not dependent on the lytic activity. Thermal and chemical treatments of HEWL enabled the production of oligoforms and increased antibacterial activity over a wider spectrum. Heat-denatured HEWL at pH 6.0 and chemically-denatured HEWL increased the HEWL antibacterial spectrum against Gram-negative bacteria (Escherichia coli ATCC 25922). HEWL at 120 °C and pH 6.0 (1.0 mg/mL) inhibited 78.20% of the growth of E. coli. HEWL/DTT treatment for 4.0 h (1.0 mg/mL) inhibited 68.75% of the growth E. coli. Heat-denatured HEWL at pH 6.0 and pH 7.0 and chemically-denatured HEWL (1.0, 1.5, 2.0, and 4.0 h with DTT) were active against Gram-positive bacteria (Staphylococcus carnosus CECT 4491T). Heat-denatured and chemical-denatured HEWL caused the death of the bacteria with the destruction of the cell wall. LIVE/DEAD assays of fluorescent dye stain of the membrane cell showed membrane perturbation of bacteria after incubation with modified HEWL. The cell wall destruction was viewed using electron microscopy. The results obtained in this study suggest that heat-denatured HEWL at pH 6.0 and chemical-denatured HEWL treatments increase the HEWL antibacterial activity against Gram-negative bacteria.


2010 ◽  
Vol 7 (s1) ◽  
pp. S61-S66 ◽  
Author(s):  
Makhloufia Mohammed ◽  
BenaÏssa Tahar ◽  
Derdour AÏcha ◽  
Henni Djamel Eddine

A quaternary ammonium salt was synthesized from diethylaminoethyl methacrylate (DEAEMA) by quaternization with hexadecyl bromide. The resultant compound (Am-h) was characterized by FTIR and NMR spectroscopy. Its bactericidal activity was evaluated by determining minimum inhibitory concentration (MIC) values and inhibitory zone diameter against gram positive bacteria (Streptococcus sp.) and gram negative bacteria such asAcenito baumannii, Klebsiella pneumoniaeandProteus sp. respectively. The results showed that the MIC values of the synthesised compound (Am-h) were 2 μg/mL againstAcenito baumannii, Klebsiella pneumoniae, Proteus sp. and Streptococcus sp.


Author(s):  
V.N. Bhadani ◽  
H.D. Purohit ◽  
Dipak M. Purohit

Isoxazoline derivatives shows various types of therapeutic activities like antimicrobial[1], anti-inflammatory[2], anticonvulsant[3], Hypoglycemic[4] etc. getting to synthesized in view of 3-Aryl-5-[(4′-difluoromethoxy)(3′-hydroxy)phenyl]-4,5-dihydro isoxazole (4a-4i) have been synthesized. All the newly synthesized compounds were screened for their antibacterial activity against S. aureus, M. luteus (Gram-positive bacteria), E. coli, S. thyphi (Gram-negative bacteria) and antifungal activity against Candida albicans (Fungi). The biological activities (MIC) of the synthesized compounds were compared with known standard drugs.


INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (06) ◽  
pp. 30-35
Author(s):  
Naveen K. Kottakki ◽  
◽  
Amperayani K. Rao ◽  

In the current study, a series of piperine – piperazine analogues (5a to 5f) were designed and synthesized. The piperine was isolated from pepper and used for the conjugation with heterocyclic moiety for better biological activity. The piperazine heterocyclic was chosen for conjugation with piperine. The newly synthesized structures were determined by IR, 1H NMR and 13C NMR spectral data. The compounds were examined for their anti‐microbial activity against gram-positive (Bacillus subtilis) and gram-negative (Vibrio cholerae) bacteria using the agar well diffusion method. The newly synthesized compounds exhibited capable activities against V. cholerae and B. subtilis and it showed minimum inhibitory concentration. Among all the synthesized compounds, 5f has the highest activity (26 mm) against gram-positive bacteria and (29mm) against gram-negative bacteria. The remaining compounds showed appreciable antibacterial activity. The enhanced activity of the synthesized compounds may be due to the presence of conjugated amide linkage with the natural product piperine and piperazine heterocyclic molecule. The substituents present on the aromatic (nitro-substituted) ring also influenced the activity of the compound.


2018 ◽  
Vol 22 ◽  
pp. 10-21 ◽  
Author(s):  
Azadeh Serri ◽  
Arash Mahboubi ◽  
Afshin Zarghi ◽  
Hamid Reza Moghimi

Purpose: The antibacterial activity of some antibiotics is specific to either Gram-positive or Gram-negative bacteria.  There are different mechanisms behind such insensitivities like inability of antibiotics to permeate through some bacterial membranes, as is the case for vancomycin in Gram-negative bacteria. The present investigation tries to overcome this problem by dendrimers, in order to make Gram-negative bacteria responsive to vancomycin. Methods: The effects of generations 3 (G3) and 5 (G5) polyamidoamine amine-terminated dendrimers (NH2-PAMAM), on the antibacterial activity of vancomycin, were evaluated. Vancomycin-PAMAM dendrimers complexes were prepared and their antibacterial activities were evaluated by determination of their “minimum inhibitory concentration (MIC)”, “minimum bactericidal concentration” and “fractional inhibitory concentration index” values against two Gram-positive and four Gram-negative bacteria, using broth micro-dilution method. The complexation of vancomycin and dendrimers was also assessed by in vitro release studies across dialysis tubing using a developed HPLC method. Results: Results showed that vancomycin solution was effective against Gram-positive bacteria, but, was not effective in Gram-negative ones. Vancomycin-PAMAM dendrimers exhibited significant antibacterial efficacy against Gram-negative bacteria resulting in a decline of vancomycin MIC values by about 2, 2, 4 and 64 times in E. coli, K. pneumonia, S. typhimurium and P. aeruginosa, respectively. Results also showed that enhanced effect by G5 is more than G3. Dendrimers did not affect antibacterial activity of vancomycin in Gram-positive bacteria, as no permeation problem exists here. Conclusions: The present study revealed that both G3 and G5 cationic PAMAM dendrimers are able to make Gram-negative bacteria sensitive to vancomycin, resulting in decline of MIC values up to 64 times, possibly by increasing its permeation through bacterial membrane. These results look promising for broadening the antibacterial spectrum of vancomycin and such a strategy might be used for increasing the overall life of antibiotics.


Sign in / Sign up

Export Citation Format

Share Document