scholarly journals JUMLAH, UJI VIABILITAS DAN DAYA KECAMBAH POLEN 31 AKSESI PISANG (Musa sp.) KOLEKSI KEBUN PLASMA NUTFAH PISANG LIPI

2020 ◽  
Vol 19 (2) ◽  
Author(s):  
Erwin Fajar Hasrianda ◽  
Ahmad Zaelani ◽  
Yuyu Suryasari Poerba

Cross pollination is one of the plant breeding techniques to create a better cultivar with desired traits. A successful cross pollination is affected by quality and quantity of the pollen used. The aim from this study is to know amounts, viability and germination from various banana accessions. This study was conducted by using 31 banana accessions. Pollen quantity per anther, pollen viability, pollen germination growth were measured. The results showed that pollen amounts were ranged between 5.032 and 118.181 pollens per anther. In addition, pollen viability ranged from 30% in Tingalun accession (Musa sp. cv. Tingalun)  to 99% in Malaccensis 2x accession. Furthermore, pollen germination level varied from 1% in Mambee Thu OS accession to 48% in Rutilifes 2x accession. We also found that negative correlation between pollen viability and pollen germination were moderate with correlation coeeficient value of -0,59 ( p-value = 0,00051). From 31 banana accessions tested in this research, pollen source from Malaccensis 2x and Rutilifes 2x banana accessions have the highest potential to be used as the male parent. 

2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
John J. Burke ◽  
Mauricio Ulloa

Cotton (Gossypium hirsutum L.) production in arid and semiarid environments routinely experiences elevated temperature and low humidity challenges that ultimately determine yield and producer profitability. The present study investigated the diversity of flower petal opening to determine if traditional genetics and breeding approaches could develop a more cupped or closed flower, thereby providing a more humid microenvironment around the dehisced pollen. Six cultivars with reported differences in pollen humidity sensitivity were used to evaluate the genetics of petal opening. Crosses between open flower cultivars generally resulted in F1 offspring with open flowers. Crosses between closed flower cultivars generally resulted in F1 offspring with closed flowers. Crosses between open and closed flower cultivars provided unique phenotypes depending on the cultivars used. The results from the F1 offspring suggested that the male parent influenced the flower shape of the offspring. In addition, analysis of F2 offspring from the bidirectional crosses suggests that a single dominant gene from the male parent ultimately influences flower petal openness. Using traditional breeding techniques, it may be possible to develop cultivars with either open or closed flower phenotypes, linking pollen development stability and mature pollen viability across a range of environments to stabilize and enhance crop yield.


1970 ◽  
Vol 36 (2) ◽  
pp. 185-187 ◽  
Author(s):  
Sezai Ercisli

Pollen quantity, viability and germination of four genotypes of Rosa dumalis and R. villosa were investigated. The number of anthers per flower were 90.3 in genotype 4 (Rosa villosa) and 116.4 in genotype 1 (Rosa dumalis). Genotype 1 showed the highest pollen viability on the basis of both TTC and IKI tests.   Key words: Dogrose, Pollen germination, Pollen viability, Rosa spp. DOI = 10.3329/bjb.v36i2.1511 Bangladesh J. Bot. 36(2): 185-187, 2007 (December)


1970 ◽  
Vol 11 ◽  
pp. 47-50
Author(s):  
Tul Bahadur Poon ◽  
TM Rao ◽  
C Aswath ◽  
PE Rajasekharan ◽  
DP Kumar

Fresh pollen of 16 promising genotypes of gladiolus was tested for their pollen viability. Modified cellophane method was employed to assess the pollen viability. Pollen germination media consisted of 15% sucrose supplemented with 300 ppm calcium nitrate, 200 ppm magnesium sulphate, 100 ppm potassium nitrate and 100 ppm boric acid. Highly significant variations were observed for percentage of pollen germination, non-germinated pollen and sterile pollen. The highest pollen germination (76.41%) was in genotype Hybrid selection 88-10-22, and did not differ significantly from Gladiolus callianthus (75.41%), Sapna (75.10 %), Hybrid selection 86-32-11, (73.28 %), Kum Kum (69.41%), Poonam (69.22 %), Hybrid selection 87-22-1 (67.87 %), Hybrid selection 87-1-1 (67.61 %), Psittacinus hybrid (64.64%) and Darshan (63.97%). The lowest non- germinated pollen (10.47%) was in genotype Gladiolus callianthus, and insignificantly followed by Hybrid selection 88-10-22 with 18.77 % and Hybrid selection 87-22-1 with 18.95 %. The lowest percentage of sterile pollen was noticed in genotype Sapna (2.82%) followed by Poonam with 4.00 % Hybrid selection 88-10-22 with 4.82% and Hybrid selection 82-11-27 with 5.22%. Key words: Gladiolus; germination; pollen DOI: 10.3126/njst.v11i0.4089Nepal Journal of Science and Technology 11 (2010) 47-50


2019 ◽  
Vol 157 (04) ◽  
pp. 283-299 ◽  
Author(s):  
C. Malumpong ◽  
S. Cheabu ◽  
C. Mongkolsiriwatana ◽  
W. Detpittayanan ◽  
A. Vanavichit

AbstractThe reproductive stage of rice is the most sensitive to heat stress, which can lead to spikelet sterility. Thus, heat-tolerant and heat-susceptible genotypes were used to investigate their differences in terms of phenotypic responses and expression changes of Hsf genes at the pre-flowering stage under heat stress. Results clearly showed that panicles had the highest temperature compared with other plant parts under both natural and heated conditions. However, the temperatures of tolerant and susceptible genotypes were not significantly different. In terms of spikelet fertility, the tolerant lines M9962 and M7988 had high seed set because their anther dehiscence, pollen viability and pollen germination were only slightly affected. In contrast, the susceptible line Sinlek showed severe effects at all steps of fertilization, and the pollen viability of M7766 was slightly affected under heat stress but was more affected in terms of anther dehiscence and pollen germination. Both susceptible lines showed dramatically decreased seed set. In addition, the expression of six HsfA genes in the flag leaves and spikelets at the R2 stage of plants under heat stress showed different responses. Notably, expression of the HsfA2a gene was predominantly upregulated in the flag leaf and spikelets under heat stress in M9962. Therefore, it can be concluded that heat stress has severe effects on the stamen, and that different genotypes have different susceptibilities to heat stress.


2021 ◽  
Vol 22 (11) ◽  
pp. 5585
Author(s):  
Sajid Fiaz ◽  
Sunny Ahmar ◽  
Sajjad Saeed ◽  
Aamir Riaz ◽  
Freddy Mora-Poblete ◽  
...  

A world with zero hunger is possible only through a sustainable increase in food production and distribution and the elimination of poverty. Scientific, logistical, and humanitarian approaches must be employed simultaneously to ensure food security, starting with farmers and breeders and extending to policy makers and governments. The current agricultural production system is facing the challenge of sustainably increasing grain quality and yield and enhancing resistance to biotic and abiotic stress under the intensifying pressure of climate change. Under present circumstances, conventional breeding techniques are not sufficient. Innovation in plant breeding is critical in managing agricultural challenges and achieving sustainable crop production. Novel plant breeding techniques, involving a series of developments from genome editing techniques to speed breeding and the integration of omics technology, offer relevant, versatile, cost-effective, and less time-consuming ways of achieving precision in plant breeding. Opportunities to edit agriculturally significant genes now exist as a result of new genome editing techniques. These range from random (physical and chemical mutagens) to non-random meganucleases (MegaN), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein system 9 (CRISPR/Cas9), the CRISPR system from Prevotella and Francisella1 (Cpf1), base editing (BE), and prime editing (PE). Genome editing techniques that promote crop improvement through hybrid seed production, induced apomixis, and resistance to biotic and abiotic stress are prioritized when selecting for genetic gain in a restricted timeframe. The novel CRISPR-associated protein system 9 variants, namely BE and PE, can generate transgene-free plants with more frequency and are therefore being used for knocking out of genes of interest. We provide a comprehensive review of the evolution of genome editing technologies, especially the application of the third-generation genome editing technologies to achieve various plant breeding objectives within the regulatory regimes adopted by various countries. Future development and the optimization of forward and reverse genetics to achieve food security are evaluated.


2021 ◽  
Vol 258-259 ◽  
pp. 153378
Author(s):  
Eugenia M.A. Enfissi ◽  
Margit Drapal ◽  
Laura Perez-Fons ◽  
Marilise Nogueira ◽  
Harriet M. Berry ◽  
...  

2021 ◽  
Vol 7 (3) ◽  
pp. 64-69
Author(s):  
L. Bayramov

Abstract. The zones of distribution of varieties and forms of quince on the territory of the Nakhchivan Autonomous Republic have been established, phenological observations have been carried out, their flowering and fruiting have been studied. On the territory of the Autonomous Republic, flowering of varieties and forms of quince begins in the second decade of April, depending on the distribution zone, with an average daily temperature of 12–13 °C and lasts 12–13 days, depending on weather conditions. Each flower has 10–12 stamens arranged in one row. The article also studied the viability of pollen in a number of quince varieties. Pollen viability was studied in the varieties Sary, Tursh, Ordubad, Gara and wild forms. Pollen fertility was determined by staining with acetocarmine. Pollen germinates in 2–5–10–15 and 20% glucose solution. Counting of germinated pollen grains was carried out under a microscope. The study showed that of all the experimental varieties, the pollen fertility of the Sary quince and Tursh quince varieties is high (up to 96.6–97.1%). The best medium for the germination of quince pollen is a 10–15% glucose solution. Pollen germination in this solution reaches 47.4–88.0%. In distilled water (control), the germination of quince pollen reached from 9.7% to 35.6% for varieties. Quince pollen remains viable for 31–43 days.


Sign in / Sign up

Export Citation Format

Share Document