scholarly journals Reuse of field data in ALS-assisted forest inventory

Silva Fennica ◽  
2020 ◽  
Vol 54 (5) ◽  
Author(s):  
Ana de Lera Garrido ◽  
Terje Gobakken ◽  
Hans Ørka ◽  
Erik Næsset ◽  
Ole Bollandsås

Forest inventories assisted by wall-to-wall airborne laser scanning (ALS), have become common practice in many countries. One major cost component in these inventories is the measurement of field sample plots used for constructing models relating biophysical forest attributes to metrics derived from ALS data. In areas where ALS-assisted forest inventories are planned, and in which the previous inventories were performed with the same method, reusing previously acquired field data can potentially reduce costs, either by (1) temporally transferring previously constructed models or (2) projecting field reference data using growth models that can serve as field reference data for model construction with up-to-date ALS data. In this study, we analyzed these two approaches of reusing field data acquired 15 years prior to the current ALS acquisition to estimate six up-to-date forest attributes (dominant tree height, mean tree height, stem number, stand basal area, volume, and aboveground biomass). Both approaches were evaluated within small stands with sizes of approximately 0.37 ha, assessing differences between estimates and ground reference values. The estimates were also compared to results from an up-to-date forest inventory relying on concurrent field- and ALS data. The results showed that even though the reuse of historical information has some potential and could be beneficial for forest inventories, systematic errors may appear prominent and need to be overcome to use it operationally. Our study showed systematic trends towards the overestimation of lower-range ground references and underestimation of the upper-range ground references.

2019 ◽  
Vol 11 (3) ◽  
pp. 261 ◽  
Author(s):  
Darío Domingo ◽  
Rafael Alonso ◽  
María Teresa Lamelas ◽  
Antonio Luis Montealegre ◽  
Francisco Rodríguez ◽  
...  

This study assesses model temporal transferability using airborne laser scanning (ALS) data acquired over two different dates. Seven forest attributes (i.e. stand density, basal area, squared mean diameter, dominant diameter, tree dominant height, timber volume, and total tree biomass) were estimated using an area-based approach in Mediterranean Aleppo pine forests. Low-density ALS data were acquired in 2011 and 2016 while 147 forest inventory plots were measured in 2013, 2014, and 2016. Single-tree growth models were used to generate concomitant field data for 2011 and 2016. A comparison of five selection techniques and five regression methods were performed to regress field observations against ALS metrics. The selection of the best regression models fitted for each stand attribute, and separately for both 2011 and 2016, was performed following an indirect approach. Model performance and temporal transferability were analyzed by extrapolating the best fitted models from 2011 to 2016 and inversely from 2016 to 2011 using the direct approach. Non-parametric support vector machine with radial kernel was the best regression method with average relative % root mean square error differences of 2.13% for 2011 models and 1.58% for 2016 ones.


2020 ◽  
Vol 12 (3) ◽  
pp. 413 ◽  
Author(s):  
Adrián Pascual ◽  
Juan Guerra-Hernández ◽  
Diogo N. Cosenza ◽  
Vicente Sandoval

The level of spatial co-registration between airborne laser scanning (ALS) and ground data can determine the goodness of the statistical inference used in forest inventories. The importance of positioning methods in the field can increase, depending on the structural complexity of forests. An area-based approach was followed to conduct forest inventory over seven National Forest Inventory (NFI) forest strata in Spain. The benefit of improving the co-registration goodness was assessed through model transferability using low- and high-accuracy positioning methods. Through the inoptimality losses approach, we evaluated the value of good co-registered data, while assessing the influence of forest structural complexity. When using good co-registered data in the 4th NFI, the mean tree height (HTmean), stand basal area (G) and growing stock volume (V) models were 2.6%, 10.6% and 14.7% (in terms of root mean squared error, RMSE %), lower than when using the coordinates from the 3rd NFI. Transferring models built under poor co-registration conditions using more precise data improved the models, on average, 0.3%, 6.0% and 8.8%, while the worsening effect of using low-accuracy data with models built in optimal conditions reached 4.0%, 16.1% and 16.2%. The value of enhanced data co-registration varied between forests. The usability of current NFI data under modern forest inventory approaches can be restricted when combining with ALS data. As this research showed, investing in improving co-registration goodness over a set of samples in NFI projects enhanced model performance, depending on the type of forest and on the assessed forest attributes.


2021 ◽  
pp. 1-10
Author(s):  
Ting-Ru Yang ◽  
John A. Kershaw ◽  
Elizabeth McGarrigle ◽  
Mark J. Ducey ◽  
Dhirendra Shukla

Light detection and ranging (LiDAR) is used to estimate tree, stand, and forest characteristics across large geographic areas. In the province of Nova Scotia, an enhanced forest inventory (EFI) was developed to provide high-resolution spatial forest inventory estimates across the landscape. For various forest attributes, independent LiDAR-based relationships were built leading to mathematical and biological inconsistency among forest attribute estimates. A systems approach, composed of allometric equations describing the relationships between volume per unit area, Lorey’s average height, basal area, quadratic mean diameter, and density, is developed to address these inconsistencies. Previous results showed that applying the systems approach provided reasonable and compatible estimates and eliminated inconsistency issues among forest attributes. This study evaluates application of the systems approach applied to eastern Nova Scotia using field data from a network of permanent sample plots and recent LiDAR acquisitions. The independent EFI estimates had inconsistencies of greater than 100% for basal area and implied stand-level form factor. These inconsistencies were eliminated using the systems approach. Results show that the systems approach can be scaled to larger landscape areas and that long-term field data can be leveraged to fit the allometric systems producing mathematically and biologically consistent estimates.


2021 ◽  
Vol 97 (01) ◽  
pp. 78-96
Author(s):  
Joanne C. White ◽  
Margaret Penner ◽  
Murray Woods

Airborne laser scanning (ALS; LiDAR) data are an increasingly common data source for forest inventories, and approaches integrating ALS data with field plot measurements have become operational in several jurisdictions. As technology continues to evolve, different LiDAR sensors can provide new opportunities to incorporate LiDAR data into forest inventory workflows. Single photon LiDAR (SPL) enables efficient, large area data acquisition and merits further investigation for forest inventory applications. Herein, we investigated the capacity of leaf-on SPL data, combined with 269 field plots, for estimating forest inventory attributes in the Great Lakes–St. Lawrence mixedwood forests of southern Ontario, Canada. Inventory attribute estimates were validated at the stand level using independent reference data acquired for 27 intensively sampled stands. Top height, Lorey’s height, gross total volume for merchantable stems, merchantable stem volume, basal area, quadratic mean diameter, and total aboveground biomass were estimated with a relative RMSE of 13.52%, 7.24%, 14.61%, 16.27%, 14.42%, 12.25%, and 11.72%, respectively. Relative bias was < 1% for all attributes except top height (10.34%), merchantable volume (3.37%), and basal area (1.68%). Accuracy and bias varied by forest type and stand-level validation was important for assessing model performance in different stand conditions. SPL data can be used to generate accurate, area-based forest inventories in mixedwood forests that have a multitude of tree species and complex forest management histories.


2021 ◽  
Vol 13 (1) ◽  
pp. 131
Author(s):  
Franziska Taubert ◽  
Rico Fischer ◽  
Nikolai Knapp ◽  
Andreas Huth

Remote sensing is an important tool to monitor forests to rapidly detect changes due to global change and other threats. Here, we present a novel methodology to infer the tree size distribution from light detection and ranging (lidar) measurements. Our approach is based on a theoretical leaf–tree matrix derived from allometric relations of trees. Using the leaf–tree matrix, we compute the tree size distribution that fit to the observed leaf area density profile via lidar. To validate our approach, we analyzed the stem diameter distribution of a tropical forest in Panama and compared lidar-derived data with data from forest inventories at different spatial scales (0.04 ha to 50 ha). Our estimates had a high accuracy at scales above 1 ha (1 ha: root mean square error (RMSE) 67.6 trees ha−1/normalized RMSE 18.8%/R² 0.76; 50 ha: 22.8 trees ha−1/6.2%/0.89). Estimates for smaller scales (1-ha to 0.04-ha) were reliably for forests with low height, dense canopy or low tree height heterogeneity. Estimates for the basal area were accurate at the 1-ha scale (RMSE 4.7 tree ha−1, bias 0.8 m² ha−1) but less accurate at smaller scales. Our methodology, further tested at additional sites, provides a useful approach to determine the tree size distribution of forests by integrating information on tree allometries.


2021 ◽  
Vol 13 (12) ◽  
pp. 2297
Author(s):  
Jonathon J. Donager ◽  
Andrew J. Sánchez Meador ◽  
Ryan C. Blackburn

Applications of lidar in ecosystem conservation and management continue to expand as technology has rapidly evolved. An accounting of relative accuracy and errors among lidar platforms within a range of forest types and structural configurations was needed. Within a ponderosa pine forest in northern Arizona, we compare vegetation attributes at the tree-, plot-, and stand-scales derived from three lidar platforms: fixed-wing airborne (ALS), fixed-location terrestrial (TLS), and hand-held mobile laser scanning (MLS). We present a methodology to segment individual trees from TLS and MLS datasets, incorporating eigen-value and density metrics to locate trees, then assigning point returns to trees using a graph-theory shortest-path approach. Overall, we found MLS consistently provided more accurate structural metrics at the tree- (e.g., mean absolute error for DBH in cm was 4.8, 5.0, and 9.1 for MLS, TLS and ALS, respectively) and plot-scale (e.g., R2 for field observed and lidar-derived basal area, m2 ha−1, was 0.986, 0.974, and 0.851 for MLS, TLS, and ALS, respectively) as compared to ALS and TLS. While TLS data produced estimates similar to MLS, attributes derived from TLS often underpredicted structural values due to occlusion. Additionally, ALS data provided accurate estimates of tree height for larger trees, yet consistently missed and underpredicted small trees (≤35 cm). MLS produced accurate estimates of canopy cover and landscape metrics up to 50 m from plot center. TLS tended to underpredict both canopy cover and patch metrics with constant bias due to occlusion. Taking full advantage of minimal occlusion effects, MLS data consistently provided the best individual tree and plot-based metrics, with ALS providing the best estimates for volume, biomass, and canopy cover. Overall, we found MLS data logistically simple, quickly acquirable, and accurate for small area inventories, assessments, and monitoring activities. We suggest further work exploring the active use of MLS for forest monitoring and inventory.


2018 ◽  
Vol 10 (10) ◽  
pp. 1562 ◽  
Author(s):  
Kathryn Fankhauser ◽  
Nikolay Strigul ◽  
Demetrios Gatziolis

Forest inventories are constrained by resource-intensive fieldwork, while unmanned aerial systems (UASs) offer rapid, reliable, and replicable data collection and processing. This research leverages advancements in photogrammetry and market sensors and platforms to incorporate a UAS-based approach into existing forestry monitoring schemes. Digital imagery from a UAS was collected, photogrammetrically processed, and compared to in situ and aerial laser scanning (ALS)-derived plot tree counts and heights on a subsample of national forest plots in Oregon. UAS- and ALS-estimated tree counts agreed with each other (r2 = 0.96) and with field data (ALS r2 = 0.93, UAS r2 = 0.84). UAS photogrammetry also reasonably approximated mean plot tree height achieved by the field inventory (r2 = 0.82, RMSE = 2.92 m) and by ALS (r2 = 0.97, RMSE = 1.04 m). The use of both nadir-oriented and oblique UAS imagery as well as the availability of ALS-derived terrain descriptions likely sustain a robust performance of our approach across classes of canopy cover and tree height. It is possible to draw similar conclusions from any of the methods, suggesting that the efficient and responsive UAS method can enhance field measurement and ALS in longitudinal inventories. Additionally, advancing UAS technology and photogrammetry allows diverse users access to forest data and integrates updated methodologies with traditional forest monitoring.


2001 ◽  
Vol 152 (6) ◽  
pp. 215-225 ◽  
Author(s):  
Michael Köhl ◽  
Peter Brassel

For forest inventories on slopes, it is necessary to correct the test areas, because the circular areas, when projected, become elliptical. Based on 93 samples from the Swiss National Forest Inventory (FNI), it was determined whether the simplified method, which increases the radius to match that of the elliptical area, leads to a distortion of the results. An average deviation of 2% was found between the FNI estimated values and the actual values for the basal area and the number of stems. For estimations of smaller units, greater distortions of the results are expected.


2020 ◽  
Vol 77 (3) ◽  
Author(s):  
Ville Vähä-Konka ◽  
Matti Maltamo ◽  
Timo Pukkala ◽  
Kalle Kärhä

Abstract Key message We examined the accuracy of the stand attribute data based on airborne laser scanning (ALS) provided by the Finnish Forest Centre. The precision of forest inventory data was compared for the first time with operative logging data measured by the harvester. Context Airborne laser scanning (ALS) is increasingly used together with models to predict the stand attributes of boreal forests. The information is updated by growth models. Information produced by remote sensing, model prediction, and growth simulation needs field verification. The data collected by harvesters on logging sites provide a means to evaluate and verify the accuracy of the ALS-based data. Aims This study investigated the accuracy of ALS-based forest inventory data provided by the Finnish Forest Centre at the stand level, using harvester data as the reference. Special interest was on timber assortment volumes where the quality reductions of sawlog are model predictions in ALS-based data and true realized reductions in the logging data. Methods We examined the accuracy of total volume and timber assortment volumes by comparing ALS-based data and operative logging data measured by a harvester. This was done both for clear cuttings and thinning sites. Accuracy of the identification of the dominant tree species of the stand was examined using the Kappa coefficient. Results In clear-felling sites, the total harvest removals based on ALS and model prediction had a RMSE% of 26.0%. In thinning, the corresponding difference in the total harvested removal was 42.4%. Compared to logged volume, ALS-based prediction overestimated sawlog removals in clear cuttings and underestimated pulpwood removals. Conclusion The study provided valuable information on the accuracy of ALS-based stand attribute data. Our results showed that ALS-based data need better methods to predict the technical quality of harvested trees, to avoid systematic overestimates of sawlog volume. We also found that the ALS-based estimates do not accurately predict the volume of trees removed in actual thinnings.


Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 905 ◽  
Author(s):  
Guerra-Hernández ◽  
Cosenza ◽  
Cardil ◽  
Silva ◽  
Botequim ◽  
...  

Estimating forest inventory variables is important in monitoring forest resources and mitigating climate change. In this respect, forest managers require flexible, non-destructive methods for estimating volume and biomass. High-resolution and low-cost remote sensing data are increasingly available to measure three-dimensional (3D) canopy structure and to model forest structural attributes. The main objective of this study was to evaluate and compare the individual tree volume estimates derived from high-density point clouds obtained from airborne laser scanning (ALS) and digital aerial photogrammetry (DAP) in Eucalyptus spp. plantations. Object-based image analysis (OBIA) techniques were applied for individual tree crown (ITC) delineation. The ITC algorithm applied correctly detected and delineated 199 trees from ALS-derived data, while 192 trees were correctly identified using DAP-based point clouds acquired from Unmanned Aerial Vehicles (UAV), representing accuracy levels of respectively 62% and 60%. Addressing volume modelling, non-linear regression fit based on individual tree height and individual crown area derived from the ITC provided the following results: Model Efficiency (Mef) = 0.43 and 0.46, Root Mean Square Error (RMSE) = 0.030 m3 and 0.026 m3, rRMSE = 20.31% and 19.97%, and an approximately unbiased results (0.025 m3 and 0.0004 m3) using DAP and ALS-based estimations, respectively. No significant difference was found between the observed value (field data) and volume estimation from ALS and DAP (p-value from t-test statistic = 0.99 and 0.98, respectively). The proposed approaches could also be used to estimate basal area or biomass stocks in Eucalyptus spp. plantations.


Sign in / Sign up

Export Citation Format

Share Document