scholarly journals Synthesis, Characterization, Antibacterial, Antifungal and Antimalarial Study of Mixed Ligand Metal Complexes Derived from Azo Quinoline with Thiosemicarbazone

2021 ◽  
Vol 33 (4) ◽  
pp. 885-891
Author(s):  
S.S. Borhade ◽  
P.T. Tryambake

Mixed ligand metal complexes of azo quinoline and thiosemicarbazone with Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) metal ions were synthesized. The structure and possible geometry of all the metal(II) complexes were analyzed and supported by IR, mass spectrum, elemental analysis, TG-DTA, electronic spectra (UV), magnetic susceptibility and molar conductance. The synthesized compounds were studied for their antibacterial, antifungal and antimalarial activities. The antimicrobial activity was carried out against bacteria (two Gram-positive bacteria and two Gram-negative bacteria), three fungal strain and one malarial pathogen

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Irina V. Galkina ◽  
Elena V. Tudriy ◽  
Yuliya V. Bakhtiyarova ◽  
Luiza M. Usupova ◽  
Marina P. Shulaeva ◽  
...  

A new series of bis-4,6-sulfonamidated 5,7-dinitrbenzofuroxans  7–11had been synthesized and tested for antimicrobial activity. The structures of new sulfanilamide derivatives were characterized by elemental analysis, IR spectroscopy, and mass spectrometry (MALDITOF). The synthesized compounds were tested for theirin vitroantimicrobial activity using the disk diffusion method against Gram-positive bacteriaStaphylococcus aureus; the Gram-negative bacteriaEscherichia coli, Pseudomonas aeruginosa, andProteus mirabilis; the fungal strainAspergillus niger; and the yeast-like pathogenic fungusCandida albicans. Our results indicate that the compounds7–11exhibit potent antimicrobial activity. The stability of the compounds was evaluated by TG and DSC methods.


Author(s):  
Mohammed Al-Amery1 ◽  
Ashraf Saad Rasheed ◽  
Dina A. Najeeb

Five new mixed ligand metal complexes have been synthesized by the reaction of divalent transition metal ions (Hg, Ni, Zn, Cu and Cd) with 2-(naphthalen-l-ylamino)-2-phenylacetonitrile (L1 ) and 1,10-phenanthroline (L2). The coordination likelihood of the two ligands toward metal ions has been suggested in the light of elemental analysis, UV-Vis spectra, FTIR, 1H-NMR, flam atomic absorption, molar conductance and magnetic studies. Results data suggest that the octahedral geometry for all the prepared complexes. Antibacterial examination of synthesized complexes in vitro was performed against four bacterias. Firstly, Gram-negative bacteria namely, Pseudomonas aerugin and Escherichia. Secondly, Gram-positive bacteria namely, Bacillus subtilis, Staphylococcuaurouss. Results data exhibit that the synthesized complexes exhibited more biological activity than tetracycline pharmaceutical.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Mashooq Ahmad Bhat ◽  
Mohamed A. Al-Omar ◽  
Ahmed M. Naglah ◽  
Abdul Arif Khan

A series of pyrazoles derived from the substituted enaminones were synthesized and were evaluated for antimicrobial activity. All the compounds were characterized by the spectral data and elemental analysis. The synthesized compounds were initially screened for their antimicrobial activity against ATCC 6538, NCTC 10400, NCTC 10418, and ATCC 27853. During initial screening, compounds (P1, P6, and P11) presented significant antimicrobial activity through disc diffusion assay. These compounds were further evaluated for antimicrobial activity at different time points against Gram-positive and Gram-negative bacteria and presented significant activity for 6 hours. The activity was found to be greater against Gram-positive bacteria. In contrast at 24 hours, the activity was found only against Gram-positive bacteria except compound (P11), showing activity against both types of bacteria. Compound (P11) was found to have highest activity against both Gram-positive and Gram-negative bacteria.


2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Eti Nurwening Sholikhah ◽  
Maulina Diah ◽  
Mustofa ◽  
Masriani ◽  
Susi Iravati ◽  
...  

Pycnarrhena cauliflora (Miers.) Diels., local name sengkubak, is one of indigenous plants from West Kalimantan that has been used as natural flavor. Pycnorrhena cauliflora is one of species of Menispermaceae family which is rich in bisbenzylisoquinoline alkaloids. This alkaloids are known to have various biological activities including antiprotozoal, antiplasmodial, antifungal and antibacterial activities. This study aimed to investigate antimicrobial activity of  the P. cauliflora (Miers.) Diels. methanolic extracts against gram-positive and gram-negative bacteria. The methanolic extract of P. cauliflora (Miers.) Diels., root, leaf and stem were prepared by maceration. The disk-diffusion method was then used to determine the antimicrobial activity of the extracts against Streptococcus pyogenes, S. mutants, Staphylococcus aureus, S. epidermidis, Salmonella typhi, Shigella flexneri, Pseudomonas aeruginosa and Escherichia coli after 18-24 h incubation at 37 oC. Amoxicillin was used as positive control for gram-positive bacteria and ciprofloxacin was used as gram-negative bacteria. The inhibition zones were then measured in mm. Analysis were conducted in duplicates. The results showed in general the methanolic extracts of P. cauliflora (Miers.) Diels. root (inhibition zone diameter= 10-23 mm) were more active than that leaf (0-15 mm) and stem (0-17 mm) extracts against gram-positive bacteria. The zone inhibition diameter of amoxicillin as positive control was 8-42 mm. In addition, the methanolic extracts of P. cauliflora (Miers.) Diels. root (12-17 mm) were also more active than that leaf (0-12 mm) and stem (0-12 mm) extracts against gram-negative bacteria. The zone inhibition diameter of ciprofloxacin as positive control was 33-36 mm. In conclusion, the methanolic extract of P. caulifloria (Miers.) Diels. root is the most extract active against both gram-positive and gram-negative bacteria. Further study will be focused to isolate active compounds in the methanolic extract of the root.


2009 ◽  
Vol 6 (3) ◽  
pp. 615-624 ◽  
Author(s):  
K. Siddappa ◽  
K. Mallikarjun ◽  
Tukaram Reddy ◽  
M. Mallikarjun ◽  
C. V. Reddy ◽  
...  

A new complexes of the type ML, MʹL and M″L [where M=Cu(II), Co(II), Ni(II) and Mn(II), Mʹ=Fe(III) and M″=Zn(II), Cd(II) and Hg(II) and L=N1-[(1E)-1-(2-hydroxyphenyl)ethylidene]-2-oxo-2H-chromene- 3-carbohydrazide (HL)] Schiff base have been synthesized and characterized by elemental analysis, magnetic susceptibility, molar conductance, IR,1H NMR, UV-Visible and ESR data. The studies indicate the HL acts as doubly monodentate bridge for metal ions and form mononuclear complexes. The complexes Ni(II), Co(II), Cu(II) Mn(II) and Fe(III) complexes are found to be octahedral, where as Zn(II), Cd(II) and Hg(II) complexes are four coordinated with tetrahedral geometry. The synthesized ligand and its metal complexes were screened for their antimicrobial activity.


2012 ◽  
Vol 9 (1) ◽  
pp. 481-486
Author(s):  
K. Anuradha ◽  
R. Rajavel

Novel Cu(II),Ni(II) and VO(II) complexes are synthesized with N1,N4-bis(2-aminobenzylidene)benzene-1,4-diamine (L). Complexes were characterized by elemental analysis, molar conductance, IR, UV and EPR. Spectral studies reveals a square planner geomentry for Cu(II), Ni(II) complexes and square pyramidal for VO(II) complex. The ligand and its complexes were also evaluated against the growth of gram positive bacteria and gram negative bacteria.


2016 ◽  
Vol 78 (3-2) ◽  
Author(s):  
Nor Syafawani Sarah Md Saad ◽  
Nik Ahmad Nizam Nik Malek ◽  
Chun Shiong Chong

The aim of this research was to determine the antimicrobial activity of kaolinite modified with antimicrobial compounds against Gram positive and Gram negative bacteria. Copper kaolinite (Cu-kaolinite) was prepared by loading raw kaolinite with copper nitrate trihydrate (CuNO3) while surfactant modified Cu-kaolinite (SM-Cu-kaolinite) was prepared by adding cationic surfactants hexadecyltrimethyl ammonium (HDTMA) on Cu-Kaolinite. Samples was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analyzer. The antimicrobial activity of the samples was tested against Gram negative bacteria (Escherichia coli ATCC 11229 and Pseudomonas aeruginosa ATCC 15442), and Gram positive bacteria (Staphylococcus aureus ATCC 6538 and Enterococcus faecalis ATCC 29212) through disc diffusion technique (DDT) and minimum inhibition concentration (MIC). The results showed that the antimicrobial activity of Cu-kaolinite increased after modified with HDTMA due to the synergistic effects of Cu ions and HDTMA molecules on the kaolinite. The antimicrobial activity for surfactant modified Cu-kaolinite was greater for Gram positive bacteria compared to Gram negative bacteria. In conclusion, the attachment of HDTMA on Cu-kaolinite contributed to the enhanced antimicrobial activity against wide spectrum of bacteria (Gram positive and Gram negative bacteria).


Antibiotics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 238 ◽  
Author(s):  
Yamil Liscano ◽  
Constain H. Salamanca ◽  
Lina Vargas ◽  
Stefania Cantor ◽  
Valentina Laverde-Rojas ◽  
...  

Recently, resistance of pathogens towards conventional antibiotics has increased, representing a threat to public health globally. As part of the fight against this, studies on alternative antibiotics such as antimicrobial peptides have been performed, and it has been shown that their sequence and structure are closely related to their antimicrobial activity. Against this background, we here evaluated the antibacterial activity of two peptides developed by solid-phase synthesis, Alyteserin 1c (WT) and its mutant derivative (ΔM), which shows increased net charge and reduced hydrophobicity. These structural characteristics were modified as a result of amino acid substitutions on the polar face of the WT helix. The minimum inhibitory concentration (MIC) of both peptides was obtained in Gram-positive and Gram-negative bacteria. The results showed that the rational substitutions of the amino acids increased the activity in Gram-positive bacteria, especially against Staphylococcus aureus, for which the MIC was one-third of that for the WT analog. In contrast to the case for Gram-positive bacteria, these substitutions decreased activity against Gram-negative bacteria, especially in Escherichia coli, for which the MIC was eight-fold higher than that exhibited by the WT peptide. To understand this, models of the peptide behavior upon interacting with membranes of E. coli and S. aureus created using molecular dynamics were studied and it was determined that the helical stability of the peptide is indispensable for antimicrobial activity. The hydrogen bonds between the His20 of the peptides and the phospholipids of the membranes should modulate the selectivity associated with structural stability at the carboxy-terminal region of the peptides.


2017 ◽  
Vol 27 (5) ◽  
pp. 26 ◽  
Author(s):  
Nehad A. Taher

About 10 isolates of Pediococcus sp were isolated from different cheese made in Iraq, These isolates were identified morphologically and biochemically and Api20 kit, thus there was only 6 isolate were identified as Pediococcus pentosaceus (60%).In this study, we investigate, the effect of crude Bacteriocin from Pediococcus pentosaceus on 30 clinical isolates (5 E.coli, 5 Klepsiella pneumoniae, 5 Staphylococcus aureus, 5 Pseudomonas aeroginosa, 5 Bacillus subtilis, 5 Candida albicans). The protein concentration of this Bacteriocin was measured 67mg\ml by Bradford method and used as (1:2) by vol during the measuring the antimicrobial activity against the above clinical isolates by two methods wells and  agar plug assay. The results showed that  the inhibitory activity of this Bacteriocin was higher by wells method than agar pluq assay against Gram–positive bacteria or Gram-negative bacteria and yeast under this study.


2021 ◽  
Vol 10 (4) ◽  
pp. 427-434 ◽  
Author(s):  
Turdibek Toshmurodov ◽  
Abdukhakim Ziyaev ◽  
Sobirdjan Sasmakov ◽  
Jaloliddin Abdurakhmanov ◽  
Mavluda Ziyaeva ◽  
...  

Amidoalkylation of secondary heterocyclic amines by N-[5-(alkylsulfanyl)-1,3,4-thiadiazol-2-yl]-2'-chloroacetamide resulted the new compounds 5-10 that contain 1,3,4-thiadiazole-5-thione moiety alongside pyperidine, morpholine, and cytisine fragments. In vitro screening of antimicrobial activity of synthesized compounds showed that N-[5-(amylsulfanyl)-1,3,4-thiadiazol-2-yl]-2'-morpholinacetamide exhibited an appreciable antibacterial activity against gram-negative bacteria of Escherichia coli (inhibition zone diameter of 16 mm) and gram-positive bacteria of Staphylococcus aureus and Bacillus subtilis (10-13 mm).


Sign in / Sign up

Export Citation Format

Share Document