scholarly journals Fabrication of Magnetic Nanoparticles Integrated Carbon Matrix from Chrysopogon zizanioides Roots: Strong Dye Adsorption and Persulphate Assisted Photodegradation

2021 ◽  
Vol 34 (1) ◽  
pp. 201-208
Author(s):  
A.P. Mary Sri Archana ◽  
A. Edwin Vasu

Activated carbon with magnetic nanoparticles was prepared from the roots of Chrysopogon zizanioides by impregnating the biomass with Fe3+ followed by carbonization in a muffle furnace. To assist the carbonization process, Zn2+ ions were also taken along with ferric ions during impregnation. The pHZPC, density of surface functional groups, surface acidity constants and advanced characterizations like FT-IR, N2 adsorption-desorption isotherms, SEM with EDAX, DLS, XRD and VSM analysis were carried out. The adsorption and natural sunlight induced photooxidation of two cationic dyes, namely, methylene blue and rhodamine B in presence of potassium persulphate were studied by varying parameters like time, dye concentration, pH of the dye solution, amount of magnetic activated carbon and concentration of persulphate ions. The adsorption capacities of methylene blue and rhodamine B were found to be 5.97 and 0.96 mg/g, respectively. Photocatalytic oxidation of the dyes was very rapid in the presence of persulphate with the observed rate constants being 5.3 × 10–3 min–1 for methylene blue and 13.0 × 10–3 min–1 for rhodamine B. The magnetic activated carbon is found to be effective even after five successive degradation experiments.

Author(s):  
Ali H. Jawad ◽  
Ahmed Saud Abdulhameed ◽  
Noor Nazihah Bahrudin ◽  
Nurul Nadiah Mohd Firdaus Hum ◽  
S. N. Surip ◽  
...  

Abstract In this work, sugarcane bagasse waste (SBW) was used as a lignocellulosic precursor to develop a high surface area activated carbon (AC) by thermal treatment of the SBW impregnated with KOH. This sugarcane bagasse waste activated carbon (SBWAC) was characterized by means of crystallinity, porosity, surface morphology and functional groups availability. The SBWAC exhibited Type I isotherm which corresponds to microporosity with high specific surface area of 709.3 m2/g and 6.6 nm of mean pore diameter. Further application of SBWAC as an adsorbent for methylene blue (MB) dye removal demonstrated that the adsorption process closely followed the pseudo-second order kinetic and Freundlich isotherm models. On the other hand, thermodynamic study revealed the endothermic nature and spontaneity of MB dye adsorption on SBWAC with high acquired adsorption capacity (136.5 mg/g). The MB dye adsorption onto SBWAC possibly involved electrostatic interaction, H-bonding and π-π interaction. This work demonstrates SBW as a potential lignocellulosic precursor to produce high surface area AC that can potentially remove more cationic dyes from the aqueous environment.


NANO ◽  
2021 ◽  
pp. 2150068
Author(s):  
Zhao Yang ◽  
Zhongwei Zhao ◽  
Xuan Yang ◽  
Zongli Ren

For the treatment of dye wastewater, it is of great significance to develop new adsorbents with high adsorption capacity and good separation effect. In this study, the Fe-Co magnetic activated carbon material (CN-Fe-Co-AC) was first prepared by high-temperature calcination. CN-Fe-Co-AC is physically characterized by various methods. CN-Fe-Co-AC can efficiently and quickly remove the organic dyes methylene blue (MB) and acid blue 80 (AB80). The adsorption of MB and acid blue based on CN-Fe-Co-AC adsorbent is mainly through the specific surface area and the functional groups on the surface. During this recovery process, the adsorption activity of CN-Fe-Co-AC for MB and AB80 decreased slightly. Kinetic data can be described using a Pseudo-second-order model and the data for adsorption equilibrium can be described using the Langmuir isotherm. The theoretical adsorption capacities of MB and AB80 are 104.82[Formula: see text]mg/g and 26.94[Formula: see text]mg/g, respectively. After repeated use of five times, the removal rate of MB exceeded 96%, and the removal rate of AB80 exceeded 75%. The excellent adsorption performance and recyclability of CN-Fe-Co-AC indicate that this material has certain potential application value.


2014 ◽  
Vol 625 ◽  
pp. 106-109 ◽  
Author(s):  
Maimoon Sattar ◽  
Fareeda Hayeeye ◽  
Watchanida Chinpa ◽  
Orawan Sirichote

Polysulfone/Activated Carbon (PSF/AC) composites in bead form were prepared for Rhodamine B sorption. The scanning electron microscope (SEM) shows that pure PSF bead is smooth surface while PSF/AC bead presents the pore distribution. FT-IR spectra indicate the existence of AC on the PSF/AC bead surface. Under adsorption test of Rhodamine B, it was found that an increase in the AC content in PSF solution results in an increase in the percentages of dye adsorption from 1.38 % to 71.56% for pure PSF bead and PSF/AC added with 4 wt% of AC, respectively.


2011 ◽  
Vol 699 ◽  
pp. 245-264 ◽  
Author(s):  
A. Xavier ◽  
J. Gandhi Rajan ◽  
D. Usha ◽  
R Sathya

Methylene blue is a heterocyclic aromatic chemical compound with the molecular formula C16H18N3SCl. It has used in the biology and chemistry field. At room temperature, it appears as a solid, odourless dark green powder that yields blue solution when dissolved in water. As a part of removal of methylene blue dye from textile and leather industrial wastes, using activated carbon as adsorbents namely, commercial activated carbon (CAC), rose apple carbon (RAC), coconut shell carbon (CSC) and saw dust carbon (SDC). The percentage of Methylene blue adsorbed increases with decrease in initial concentration and particle size of adsorbent and increased with increase in contact time, temperature and dose of adsorbents. The pH is highly sensitive for dye adsorption process. The adsorption process followed first order kinetics and the adsorption data the modeled with Freundlich and Langmuir isotherms. The first kinetic equations like Natarajan Khalaf, Lagergren, Bhattacharya and Venkobhachar and intra particle diffusion were found to be applicable. A comparative account of the adsorption capacity of various carbons has been made. These activated carbons are alternative to commercial AC for the removal dyes in General and MB is particular. These results are reported highly efficient and effective and low cost adsorbent for the MB. The thermodynamics parameters are also studied and it obeys spontaneous process. The results are confirmed by before and after adsorption process with the help of the following instrumental techniques viz., FT-IR, UV-Visible Spectrophotometer and SEM photos.


Sign in / Sign up

Export Citation Format

Share Document