Iron-Cobalt Magnetic Activated Carbon as an Effective Adsorbent for the Removal of Methylene Blue and Acid Blue 80

NANO ◽  
2021 ◽  
pp. 2150068
Author(s):  
Zhao Yang ◽  
Zhongwei Zhao ◽  
Xuan Yang ◽  
Zongli Ren

For the treatment of dye wastewater, it is of great significance to develop new adsorbents with high adsorption capacity and good separation effect. In this study, the Fe-Co magnetic activated carbon material (CN-Fe-Co-AC) was first prepared by high-temperature calcination. CN-Fe-Co-AC is physically characterized by various methods. CN-Fe-Co-AC can efficiently and quickly remove the organic dyes methylene blue (MB) and acid blue 80 (AB80). The adsorption of MB and acid blue based on CN-Fe-Co-AC adsorbent is mainly through the specific surface area and the functional groups on the surface. During this recovery process, the adsorption activity of CN-Fe-Co-AC for MB and AB80 decreased slightly. Kinetic data can be described using a Pseudo-second-order model and the data for adsorption equilibrium can be described using the Langmuir isotherm. The theoretical adsorption capacities of MB and AB80 are 104.82[Formula: see text]mg/g and 26.94[Formula: see text]mg/g, respectively. After repeated use of five times, the removal rate of MB exceeded 96%, and the removal rate of AB80 exceeded 75%. The excellent adsorption performance and recyclability of CN-Fe-Co-AC indicate that this material has certain potential application value.

2021 ◽  
Vol 10 (1) ◽  
pp. 59-66
Author(s):  
Son Le Lam ◽  
Phu Nguyen Vinh ◽  
Hieu Le Trung ◽  
Tan Le Thua ◽  
Nhan Dang Thi Thanh ◽  
...  

Glucomannan/graphene oxide (GM/GO) hydrogel was synthesized by using calcium hydroxide as the crosslinker. The synthesized material was characterized by using IR, XRD, SEM, EDX and RAMAN technology. The composite hydrogel was used for removal of organic dyes from aqueous solution. The results showed that the GM/GO hydrogel had a porous structure and a high adsorption capacity toward methylene blue (MB). The pseudo-second-order kinetic model could fit the rate equation of MB adsorption onto the GM/GO hydrogel. The adsorption of MB onto GM/GO hydrogel was a spontaneous process. In addition, the equilibrium adsorption isotherm data indicated that equilibrium data were fitted to the Langmuir isotherm and the maximum dye adsorption capacity was 198,69 mg.g-1. Moreover, the hydrogel was stable and easily recovered and adsorption capacity was around 97% of the initial saturation adsorption capacity after being used five times.


2008 ◽  
Vol 5 (4) ◽  
pp. 742-753 ◽  
Author(s):  
M. Sujatha ◽  
A. Geetha ◽  
P. Sivakumar ◽  
P. N. Palanisamy

An Experimental and theoretical study has been conducted on the adsorption of methylene blue dye using activated carbon prepared from babul seed by chemical activation with orthophosphoric acid. BET surface area of the activated carbon was determined as 1060 m2/g. Adsorption kinetics, equilibrium and thermodynamics were investigated as a function of initial dye concentration, temperature and pH. First order Lagergren, pseudo-second order and Elovich kinetic models were used to test the adsorption kinetics. Results were analyzed by the Langmuir, Freundlich and Temkin isotherm models. Based on regression coefficient, the equilibrium data found fitted well to the Langmuir equilibrium model than other models. The characteristics of the prepared activated carbon were found comparable to the commercial activated carbon. It is found that the babul seed activated carbon is very effective for the removal of colouring matter.


2021 ◽  
Vol 68 (2) ◽  
pp. 363-373
Author(s):  
Roya Salahshour ◽  
Mehdi Shanbedi ◽  
Hossein Esmaeili

In the present work, methylene blue was eliminated from aqueous solution using activated carbon prepared by lotus leaves. To perform the experiments, batch method was applied. Also, several analyses such as SEM, FTIR, EDAX and BET were done to determine the surface properties of the activated carbon. The results showed that the maximum sorption efficiency of 97.59% was obtained in initial dye concentration of 10 mg/L, pH of 9, adsorbent dosage of 4 g/L, temperature of 25 °C, contact time of 60 min and mixture speed of 400 rpm. Furthermore, the maximum adsorption capacity was determined 80 mg/g, which was a significant value. The experimental data was analyzed using pseudo-first order, pseudo-second order and intra-particle diffusion kinetic models, which the results showed that the pseudo-second order kinetic model could better describe the kinetic behavior of the sorption process. Also, the constant rate of the pseudo-second order kinetic model was obtained in the range of 0.0218–0.0345 g/mg.min. Moreover, the adsorption equilibrium was well described using Freundlich isotherm model. Furthermore, the thermodynamic studies indicated that the sorption process of methylene blue dye using the activated carbon was spontaneous and exothermic.


2021 ◽  
Vol 17 (6) ◽  
pp. 768-775
Author(s):  
Fadina Amran ◽  
Nur Fatiah Zainuddin ◽  
Muhammad Abbas Ahmad Zaini

The present work was aimed at evaluating the performance of two-stage adsorber for methylene blue removal by coconut shell activated carbon in minimizing the adsorbent mass and contact time. The Langmuir constants were used to evaluate the optimum mass, while the pseudo-second-order constants for contact time. Results show that the adsorbent mass can only be minimized by 0.01 % due to the high adsorbent affinity towards methylene blue, while the contact time has been optimized to 12.2 min at the studied conditions. The effect of adsorbent affinity in two-stage adsorber was analyzed to shed some light about its importance in the design of two-stage adsorber. The performance evaluation was also discussed to bring insight into wastewater treatment applications.


Author(s):  
Li Cong ◽  
Lingling Feng ◽  
Xinlai Wei ◽  
Jie Jin ◽  
Ke Wu

The activated carbon was prepared from sycamore bark by activation of zinc chloride. The absorbing effect of activated carbon on Congo red wastewater is studied. The characteristics of sycamore bark activated carbon were characterized by SEM and BET. The effects of adsorbent dosage, time, and shaking speed on the adsorption properties of Congo red by sycamore bark activated carbon were studied. The isotherm, kinetics, and thermodynamics of adsorption were explored. The results revealed that the activated carbon contain a large apparent mesopores. Adsorption efficiency was increased with enhancing the adsorption dosage and time. The removal rate of Conge red reached to 98.2% under room temperature with adsorbent dosage of 3.0 g/L, adsorption time of 120 min, shaking speed of 60r/min. The adsorption of Congo red on sycamore bark activated carbon was followed Langmuir isotherm model and Lagergren pseudo-second order kinetics model. The adsorption was spontaneous, endothermic, and the entropy was increasing in the adsorption process.


2019 ◽  
Vol 25 (8) ◽  
pp. 129-148
Author(s):  
Rafie Rushdy Mohammed

In this study, composite materials consisting of Activated Carbon (AC) and Zeolite were prepared for application in the removal of methylene blue and lead from an aqueous solution. The optimum synthesis method involves the use of metakaolinization and zeolitization, in the presence of activated carbon from kaolin, to form Zeolite. First, Kaolin was thermally activated into amorphous kaolin (metakaolinization); then the resultant metakaolin was attacked by alkaline, transforming it into crystalline zeolite (zeolitization). Using nitrogen adsorption and SEM techniques, the examination and characterization of composite materials confirmed the presence of a homogenous distribution of Zeolite throughout the activated carbon. It has also shown the carbonization process did not destroy the crystalline structure of the zeolite, which was revealed to be intact. Experiments in batch mode were conducted (using three differently-prepared composites, zeolite and activated carbon), to investigate the removal of methylene blue and lead from the aqueous solution of the sorbents. Key experimental parameters (initial concentration, pH, contact time and adsorbent dosage) from the obtained results were measured and analysed. Freundlich and Langmuir models were used to describe the adsorption isotherms, and the observed adsorption kinetic adhered to pseudo-second order.  


2018 ◽  
Vol 78 (10) ◽  
pp. 2055-2063
Author(s):  
Asmaa Msaad ◽  
Mounir Belbahloul ◽  
Samir El Hajjaji ◽  
Abdeljalil Zouhri

Abstract In this work, the use of a novel low-cost adsorbent derived from Ziziphus lotus (ZL) and industrial carbon (IC) has been successfully applied to the removal of methylene blue (MB) from aqueous solutions. The efficiency of this material was studied through Lagergren pseudo-first-order and pseudo-second-order kinetic models. The process for the novel activated carbon and the IC were best represented by the pseudo-second-order rate model. Langmuir and Freundlich isotherms were used to describe the sorption equilibrium data. The Langmuir model turned out to be the most adequate and maximum capacities were measured to be 833.33 and 142.85 mg.g−1 for ZL activated carbon and IC from Sigma Aldrich, respectively. The thermodynamic study revealed that the sorption process is spontaneous and endothermic for the two adsorbents. To explain the effectiveness of MB removal, ZL activated carbon was characterized by scanning electron microscopy, Brunauer–Emmett–Teller surface area, X-ray diffraction and Fourier transform infrared spectroscopy.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Julius Ndi Nsami ◽  
Joseph Ketcha Mbadcam

The adsorption of methylene blue from aqueous solution onto activated carbon prepared from cola nut shell has been investigated under batch mode. The influence of major parameters governing the efficiency of the process such as, solution pH, sorbent dose, initial concentration, and contact time on the removal process was investigated. The time-dependent experimental studies showed that the adsorption quantity of methylene blue increases with initial concentration and decreasing adsorbent dosage. The equilibrium time of 180 min was observed and maximum adsorption was favoured at pH 3.5. The dye removal using 0.1 g of adsorbent was more than 90%. This dosage (0.1 g) was considered as the optimum dosage to remove methylene blue from aqueous solutions. The equilibrium adsorption data were analyzed by the Freundlich, Langmuir adsorption isotherm models. The kinetics of methylene blue solution was discussed by pseudo-first-order, pseudo-second-order, and Elovich models. The adsorption process follows the Elovich rate kinetic model, having a correlation coefficient in the range between 0.9811 and 1.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
H. Ait Ahsaine ◽  
Z. Anfar ◽  
M. Zbair ◽  
M. Ezahri ◽  
N. El Alem

Zirconium oxide/activated carbon (Zr3O/AC) composite was synthesized to remove methylene blue (MB) and crystal violet (CV) from the aqueous medium. The Zr3O/AC sample was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analyses (EDS), Raman spectroscopy (RS), BET surface area, and Fourier transform infrared spectroscopy (FTIR). XRD profiles confirmed the successful synthesis of the zirconium oxide/activated carbon composite. SEM images showed multideveloped walls with irregular particle size with channel arrays. The nitrogen physisorption combines I and IV types with a calculated BET surface area of 1095 m2/g. Raman spectrum illustrated a disorder of both crystalline structure and the graphitic structure. The adsorption was better fitted to the pseudo-second-order (PSO) kinetic model. Langmuir model fitted better the experimental results of MB adsorption, whereas the CV was better consistent with the Freundlich model. The obtained results suggested that the MB and CV adsorption might be influenced by the mass transfer that involves multiple diffusion steps. The maximum adsorption capacities are 208.33 and 204.12 mg/g for MB and CV, respectively. The MB and CV removal mechanisms were proposed, and statistical optimization was performed using central composite design combined with the response surface methodology.


Sign in / Sign up

Export Citation Format

Share Document