scholarly journals CARBOHYDRATE COUSINIA ANGRENI JUS (ASTERACEAE), ESTABLISHING THE STRUCTURE OF THEIR GLU-COFRUCTANS

2020 ◽  
pp. 41-47
Author(s):  
Kenesh Turdumambetovich Turdumambetov ◽  
Zulayka Sulaimanovna Azhibaeva ◽  
Dzhanymbyu Jorupbekova ◽  
Raisa Andreyevna Goncharova ◽  
Elnura Esenbaevna Ernazarova

Currently, a lot of attention is paid to a number of researchers oligo – and polysaccharides. This is due to their high content in plant materials and the fulfillment of a special role in the development of living organisms, which is of great importance in the production of fructose, sucrose and inulin. Kyrgyzstan has huge reserves of still little-studied, environmentally friendly medicinal and other plant species. The article deals with the study of the chemical composition of the carbohydrate complex in plants of the genus Cousinia angreni Jus. Experimental studies have been carried out to isolate and establish structures of water-soluble polysaccharides and alcohol-soluble oligosaccharides. Glucofructan was isolated from the roots of Cousinia angreni Jus, the structure of individual fractions was studied by methylation, periodic oxidation, paper chromatography, thin-layer chromatography and GLC, IR and 13C-NMR spectroscopy. When compared with witnesses, 2,3,4,6-tetra-O-Me-D-glucose, 1,3,4,6-tetra-O-Me-D-fructose, 3,4,6-tri-O-Me-D-fructose (main product) and trace amounts of 1,3,4-tri-O-Me-D-fructose. The presence of the main product 3,4,6-tri-O-Me-D-fructose indicates the predominance of β-(2→1) bonds. Thus, it was found that glucofructans of the Angren cousin (C. angreni Jus) consist of fructofuranose residues linked by β-(2→1) inulin type bonds.

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2603
Author(s):  
Luana Malacaria ◽  
Giuseppina Anna Corrente ◽  
Amerigo Beneduci ◽  
Emilia Furia ◽  
Tiziana Marino ◽  
...  

This review focuses on the ability of some natural antioxidant molecules (i.e., hydroxycinnamic acids, coumarin-3-carboxylic acid, quercetin, luteolin and curcumin) to form Al(III)- and Fe(III)-complexes with the aim of evaluating the coordination properties from a combined experimental and theoretical point of view. Despite the contributions of previous studies on the chemical properties and biological activity of these metal complexes involving such natural antioxidants, further detailed relationships between the structure and properties are still required. In this context, the investigation on the coordination properties of Al(III) and Fe(III) toward these natural antioxidant molecules might deserve high interest to design water soluble molecule-based metal carriers that can improve the metal’s intake and/or its removal in living organisms.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rasa Zalakeviciute ◽  
Katiuska Alexandrino ◽  
Yves Rybarczyk ◽  
Alexis Debut ◽  
Karla Vizuete ◽  
...  

Abstract Particulate matter (PM) is one of the key pollutants causing health risks worldwide. While the preoccupation for increased concentrations of these particles mainly depends on their sources and thus chemical composition, some regions are yet not well investigated. In this work the composition of chemical elements of atmospheric PM10 (particles with aerodynamic diameters ≤ 10 µm), collected at the urban and suburban sites in high elevation tropical city, were chemically analysed during the dry and wet seasons of 2017–2018. A large fraction (~ 68%) of PM10 composition in Quito, Ecuador is accounted for by water-soluble ions and 16 elements analysed using UV/VIS spectrophotometer and Inductively Coupled Plasma—Optical Emission Spectroscopy (ICP-OES). Hierarchical clustering analysis was performed to study a correlation between the chemical composition of urban pollution and meteorological parameters. The suburban area displays an increase in PM10 concentrations and natural elemental markers during the dry (increased wind intensity, resuspension of soil dust) season. Meanwhile, densely urbanized area shows increased total PM10 concentrations and anthropogenic elemental markers during the wet season, which may point to the worsened combustion and traffic conditions. This might indicate the prevalence of cardiovascular and respiratory problems in motorized areas of the cities in the developing world.


LWT ◽  
2007 ◽  
Vol 40 (2) ◽  
pp. 239-248 ◽  
Author(s):  
Keyvan Dastmalchi ◽  
H.J. Damien Dorman ◽  
Müberra Koşar ◽  
Raimo Hiltunen

2012 ◽  
Vol 12 (21) ◽  
pp. 10239-10255 ◽  
Author(s):  
L. T. Padró ◽  
R. H. Moore ◽  
X. Zhang ◽  
N. Rastogi ◽  
R. J. Weber ◽  
...  

Abstract. Aerosol composition and mixing state near anthropogenic sources can be highly variable and can challenge predictions of cloud condensation nuclei (CCN). The impacts of chemical composition on CCN activation kinetics is also an important, but largely unknown, aspect of cloud droplet formation. Towards this, we present in-situ size-resolved CCN measurements carried out during the 2008 summertime August Mini Intensive Gas and Aerosol Study (AMIGAS) campaign in Atlanta, GA. Aerosol chemical composition was measured by two particle-into-liquid samplers measuring water-soluble inorganic ions and total water-soluble organic carbon. Size-resolved CCN data were collected using the Scanning Mobility CCN Analysis (SMCA) method and were used to obtain characteristic aerosol hygroscopicity distributions, whose breadth reflects the aerosol compositional variability and mixing state. Knowledge of aerosol mixing state is important for accurate predictions of CCN concentrations and that the influence of an externally-mixed, CCN-active aerosol fraction varies with size from 31% for particle diameters less than 40 nm to 93% for accumulation mode aerosol during the day. Assuming size-dependent aerosol mixing state and size-invariant chemical composition decreases the average CCN concentration overprediction (for all but one mixing state and chemical composition scenario considered) from over 190–240% to less than 20%. CCN activity is parameterized using a single hygroscopicity parameter, κ, which averages to 0.16 ± 0.07 for 80 nm particles and exhibits considerable variability (from 0.03 to 0.48) throughout the study period. Particles in the 60–100 nm range exhibited similar hygroscopicity, with a κ range for 60 nm between 0.06–0.076 (mean of 0.18 ± 0.09). Smaller particles (40 nm) had on average greater κ, with a range of 0.20–0.92 (mean of 0.3 ± 0.12). Analysis of the droplet activation kinetics of the aerosol sampled suggests that most of the CCN activate as rapidly as calibration aerosol, suggesting that aerosol composition exhibits a minor (if any) impact on CCN activation kinetics.


1979 ◽  
Vol 93 (1) ◽  
pp. 115-120 ◽  
Author(s):  
A. A. Parsa ◽  
A. Wallace ◽  
J. P. Martin

SUMMARYIn a preliminary laboratory experiment in Iran, not reported here, 5 out of 30 plant materials incorporated into a highly calcareous soil had a positive effect on increasing the DTPA- (diethylenetriaminepentaacetic acid)-extractable Fe and all except one significantly increased the vegetative growth of sorghum. The plant materials included Lawsonia inermis L., Malva silvestris L., Zyzyphus nummularia Wak. and Lavandula carnopifolia L. A glasshouse study was repeated with two California soils pretreated with 0·5% Fe2O3 to determine if these organic materials have practical value in making Fe available to plants. A calcareous, Fe-deficient Hacienda (fine-loamy, mixed, thermic aquic natrargid) and a non-calcareous Yolo (fine-silty, mixed, non-acid, thermic typic xerothents). The previously mentioned organic materials and Laminaria saccharina L. (Lamour) were incorporated into the soils at two rates, 15000 and 20000μg/g, as air dry and in ash form. An adequate supply of major and micronutrients other than Fe was ensured. Other treatments included 5 μg Fe/g as FeSO4, Fe-138 chelate and control. All of the plant materials with the exception of L. carnopifolia significantly increased dry-matter yield and Fe, Zn, Cu and Mn uptake by sorghum in the Hacienda soil. In the Yolo soil the above were not significant. Thin-layer chromatography of the extracts of the plant materials revealed the presence of significant quantities of phenolic substances.


2021 ◽  
Vol 316 ◽  
pp. 521-526
Author(s):  
Vladimir A. Nosenko ◽  
Alexander V. Fetisov ◽  
Semen P. Kuznetsov

The article summarizes the results of the of the titanium alloy surface morphology and chemical composition study after grinding with a wheel of cubic boron nitride on a ceramic bond. The titanium alloy was treated using the method of cut-in grinding in the finishing mode using a synthetic water-soluble lubricant-cooling liquid that does not contain mineral oil. The research was carried out using the FEI Versa 3D LoVac electron microscope. Digital photos of the titanium alloy surface at different magnifications are given. Individual objects’ morphology allows us to identify them as wear products of abrasive tools. The chemical composition of the selected objects was studied by local x-ray spectral analysis. CBN crystals are partially or completely pressed into the treated surface and covered with a layer of the treated material. On the surface of CBN crystals, there are chemical elements that are part of the abrasive tool bond.


2018 ◽  
Vol 74 (1-2) ◽  
pp. 9-15
Author(s):  
Bahman Nickavar ◽  
Hossein Vahidi ◽  
Mehrnoosh Eslami

Abstract Rhizopus microsporus var. oligosporus is a fungus that belongs to the Mucoraceae family that is used for the preparation of some soy-fermented foods. Microbial biotransformation of progesterone by R. microsporus var. oligosporus afforded some monohydroxylated and dihydroxylated metabolites. The main product was purified using chromatographic methods and identified as 11α-hydroxyprogesterone on the basis of its spectroscopic features. Time course studies by high-performance thin-layer chromatography demonstrated that this fungi efficiently hydroxylated progesterone at the 11α-position for 3 days with a yield of 76.48%, but beyond this time, the microorganism transformed 11α-hydroxyprogesterone into dihydroxylated metabolites. 11α-Hydroxyprogesterone is widely used as a precursor in the synthesis of hydrocortisone and other steroidal anti-inflammatory agents.


Sign in / Sign up

Export Citation Format

Share Document